

recon-pipeline

recon-pipeline was designed to chain together multiple security tools as part of a Flow-Based Programming paradigm.
Each component is part of a network of “black box” processes. These components exchange data between each other and
can be reconnected in different ways to form different applications without any internal changes.

Getting Started

There are an accompanying set of blog posts [https://epi052.gitlab.io/notes-to-self/blog/2019-09-01-how-to-build-an-automated-recon-pipeline-with-python-and-luigi/]
detailing the development process and underpinnings of the pipeline. Feel free to check them out if
you’re so inclined, but they’re in no way required reading to use the tool.

	Installation Instructions - How to install recon-pipeline and associated dependencies

	Defining Target Scope - How to define the scope of your scans (list of targets and a blacklist)

	Running Scans - Example scan of tesla.com using recon-pipeline

	Viewing Scan Results - How to view scan results

	Using a Scheduler - The Luigi schedulers and which to choose

	Visualizing Tasks - How to check on active tasks once they’re running

Personalization

	How to personalize the pipeline

API Reference

	Commands
	tools

	database

	scan

	status

	view

	Database Manager

	Database Models
	Target Model

	Endpoint Model

	Header Model

	IP Address Model

	Nmap Model

	Nmap Scripting Engine Model

	Port Model

	Screenshot Model

	Searchsploit Model

	Technology Model

	Parsers
	Amass Parser

	Web Targets Parser

	Masscan Parser

	Scanners
	Amass Scanner

	Aquatone Scanner

	Full Scanner

	Gobuster Scanner

	Hackthebox Scanner

	Masscan Scanner

	Searchsploit Scanner

	Subjack Scanner

	ThreadedNmap Scanner

	TKOSubs Scanner

	WaybackurlsScan Scanner

	Webanalyze Scanner

Indices and tables

	Index

	Search Page

Getting Started

There are an accompanying set of blog posts [https://epi052.gitlab.io/notes-to-self/blog/2019-09-01-how-to-build-an-automated-recon-pipeline-with-python-and-luigi/]
detailing the development process and underpinnings of the pipeline. Feel free to check them out if
you’re so inclined, but they’re in no way required reading to use the tool.

	Installation Instructions - How to install recon-pipeline and associated dependencies

	Defining Target Scope - How to define the scope of your scans (list of targets and a blacklist)

	Running Scans - Example scan of tesla.com using recon-pipeline

	Viewing Scan Results - How to view scan results

	Using a Scheduler - The Luigi schedulers and which to choose

	Visualizing Tasks - How to check on active tasks once they’re running

Installation Instructions

There are two primary phases for installation:

	prior to the python dependencies being installed

	everything else

Manual Steps

First, the steps to get python dependencies installed in a virtual environment are as follows (and shown below)

Kali

sudo apt update
sudo apt install pipenv

Ubuntu 18.04/20.04

sudo apt update
sudo apt install python3-pip
pip install --user pipenv
echo "PATH=${PATH}:~/.local/bin" >> ~/.bashrc
bash

Both OSs After pipenv Install

git clone https://github.com/epi052/recon-pipeline.git
cd recon-pipeline
pipenv install
pipenv shell

 Defining Target Scope

Defining Target Scope

New in v0.9.0: In the event you’re scanning a single ip address or host, simply use --target. It accepts a single target and works in conjunction with --exempt-list if specified.

[db-1] recon-pipeline> scan HTBScan --target 10.10.10.183 --top-ports 1000
...

In order to scan more than one host at a time, the pipeline needs a file that describes the target’s scope to be provided as an argument to the –target-file option. The target file can consist of domains, ip addresses, and ip ranges, one per line.

In order to scan more than one host at a time, the pipeline expects a file that describes the target’s scope to be provided as an argument to the --target-file option. The target file can consist of domains, ip addresses, and ip ranges, one per line. Domains, ip addresses and ip ranges can be mixed/matched within the scope file.

tesla.com
tesla.cn
teslamotors.com
...

Some bug bounty scopes have expressly verboten subdomains and/or top-level domains, for that there is the
--exempt-list option. The exempt list follows the same rules as the target file.

shop.eu.teslamotors.com
energysupport.tesla.com
feedback.tesla.com
...

 Running Scans

Running Scans

All scans are run from within recon-pipeline’s shell. There are a number of individual scans, however to execute
multiple scans at once, recon-pipeline includes wrappers around multiple commands. As of version 0.7.3, the
following individual scans are available

	pipeline.recon.amass.AmassScan

	pipeline.recon.web.aquatone.AquatoneScan

	pipeline.recon.web.gobuster.GobusterScan

	pipeline.recon.masscan.MasscanScan

	pipeline.recon.nmap.SearchsploitScan

	pipeline.recon.web.subdomain_takeover.SubjackScan

	pipeline.recon.nmap.ThreadedNmapScan

	pipeline.recon.web.subdomain_takeover.TKOSubsScan

	pipeline.recon.web.waybackurls.WaybackurlsScan

	pipeline.recon.web.webanalyze.WebanalyzeScan

Additionally, two wrapper scans are made available. These execute multiple scans in a pipeline.

	pipeline.recon.wrappers.FullScan - runs the entire pipeline

	pipeline.recon.wrappers.HTBScan - nicety for hackthebox players (myself included) that omits the scans in FullScan that don’t make sense for HTB

Example Scan

Here are the steps the video below takes to scan tesla[.]com.

Create a targetfile

use virtual environment
pipenv shell

create targetfile; a targetfile is required for all scans
mkdir /root/bugcrowd/tesla
cd /root/bugcrowd/tesla
echo tesla.com > tesla-targetfile

create a blacklist (if necessary based on target's scope)
echo energysupport.tesla.com > tesla-blacklist
echo feedback.tesla.com >> tesla-blacklist
echo employeefeedback.tesla.com >> tesla-blacklist
echo ir.tesla.com >> tesla-blacklist

drop into the interactive shell
/root/PycharmProjects/recon-pipeline/pipeline/recon-pipeline.py
recon-pipeline>

New as of v0.9.0: In the event you’re scanning a single ip address or host, simply use --target. It accepts a single target and works in conjunction with --exempt-list if specified.

Create a new database to store scan results

recon-pipeline> database attach
 1. create new database
Your choice? 1
new database name? (recommend something unique for this target)
-> tesla-scan
[*] created database @ /home/epi/.local/recon-pipeline/databases/tesla-scan
[+] attached to sqlite database @ /home/epi/.local/recon-pipeline/databases/tesla-scan
[db-1] recon-pipeline>

Scan the target

[db-1] recon-pipeline> scan FullScan --exempt-list tesla-blacklist --target-file tesla-targetfile --interface eno1 --top-ports 2000 --rate 1200
[-] FullScan queued
[-] TKOSubsScan queued
[-] GatherWebTargets queued
[-] ParseAmassOutput queued
[-] AmassScan queued
[-] ParseMasscanOutput queued
[-] MasscanScan queued
[-] WebanalyzeScan queued
[-] SearchsploitScan queued
[-] ThreadedNmapScan queued
[-] WaybackurlsScan queued
[-] SubjackScan queued
[-] AquatoneScan queued
[-] GobusterScan queued
[db-1] recon-pipeline>

 Viewing Scan Results

Viewing Scan Results

As of version 0.9.0, scan results are stored in a database located (by default) at ~/.local/recon-pipeline/databases. Databases themselves are managed through the database command while viewing their contents is done via view.

The view command allows one to inspect different pieces of scan information via the following sub-commands

	endpoints (gobuster results)

	nmap-scans

	ports

	searchsploit-results

	targets

	web-technologies (webanalyze results)

Each of the sub-commands has a list of tab-completable options and values that can help drilling down to the data you care about.

All of the subcommands offer a --paged option for dealing with large amounts of output. --paged will show you one page of output at a time (using less under the hood).

 Using a Scheduler

Using a Scheduler

The backbone of this pipeline is spotify’s luigi [https://github.com/spotify/luigi] batch process management framework. Luigi uses the concept of a
scheduler in order to manage task execution. Two types of scheduler are available, a local scheduler and a
central scheduler. The local scheduler is useful for development and debugging while the central scheduler
provides the following two benefits:

	Make sure two instances of the same task are not running simultaneously

	Provide visualization of everything that’s going on

While in the recon-pipeline shell, running tools install luigi-service will copy the luigid.service
file provided in the repo to its appropriate systemd location and start/enable the service. The result is that the
central scheduler is up and running easily.

The other option is to add --local-scheduler to your scan command from within the recon-pipeline shell.

 Visualizing Tasks

Visualizing Tasks

Setup

To use the web console, you’ll need to install the luigid service. Assuming you’ve already
installed pipenv and created a virtual environment, you can simply run the tools install luigi-service
from within the pipeline.

Dashboard

If you’re using the central scheduler, you’ll be able to use luigi’s web console to see a
dashboard style synopsis of your tasks.

[image: ../_images/dashboard.png]

Dependency Graph

You can use the Dependency Graph link at the top of the dashboard to view your current task along with
any up/downstream tasks that are queued.

[image: ../_images/web-console.png]

Make it So

To view the console from within recon-pipeline, you can run the status command or add
--sausage to your scan command at execution time. The web console runs on port 8082 by default, so at any time
you can also just use your favorite browser to check it out manually as well.

 Making Changes to the pipeline

Making Changes to the pipeline

There are a few things you can do to modify the pipeline to your own specifications:

	Add a New Scanner

	Create a New Wrapper Scan

 Add a New Scanner

Add a New Scanner

The process of adding a new scanner is relatively simple. The steps are outlined below.

Create a tool definition file

This step isn’t strictly necessary, but if you want the pipeline to know how to install/uninstall the tool your scanner uses, this is where that is defined. Tool definition files live in the pipeline/tools directory.

pipeline/
...
├── recon-pipeline.py
└── tools
 ├── amass.yaml
 ├── aquatone.yaml
 ...

Tool Definition Required Fields

Create a .yaml file with the following fields.

	Field Name

	Type

	Description

	Required

	commands

	Array of strings

	Which commands to run to install the tool

	True

	dependencies

	Array of strings

	Each dependency must be defined in a separate definition
file, as they’ll be installed before the current defintion’s tool

	False

	environ

	Dictionary

	Use this if you need to pass information via the
environment to your tool (amass.yaml has an example)

	False

	shell

	Boolean

	true means each command in commands will be run via
/bin/sh -c (see Popen [https://docs.python.org/3.7/library/subprocess.html#subprocess.Popen]’s shell
argument for more details)

	False

Useful yaml Helpers

pipeline.tools.loader defines a few helpful functions to assist with dynamically creating values in yaml files as well as linking user-defined configuration values.

Dynamically creating strings and filesystem paths are handled by the following two functions.

	!join - join items in an array with a space character

	!join_path - join items in an array with a / character

In order to get values out of pipeline.recon.config.py, you’ll need to use one of the yaml helpers listed below.

	!get_default - get a value from the pipeline.recon.config.defaults dictionary

	!get_tool_path - get a path value from the pipeline.tools.tools dictionary

Simple Example Tool Definition

The example below needs go to be installed prior to being installed itself. It then grabs the path to the go binary from pipeline.tools.tools by using !get_tool_path. After that, it creates a command using !join that will look like /usr/local/go/bin/go get github.com/tomnomnom/waybackurls. This command will be run by the install waybackurls command (or install all).

dependencies: [go]
go: &gobin !get_tool_path "{go[path]}"

commands:
- !join [*gobin, get github.com/tomnomnom/waybackurls]

If you’re looking for a more complex example, check out searchsploit.yaml.

Write Your Scanner Class

You can find an abundance of information on how to write your scanner class starting with Part II [https://epi052.gitlab.io/notes-to-self/blog/2019-09-02-how-to-build-an-automated-recon-pipeline-with-python-and-luigi-part-two/] of the blog posts tied to recon-pipeline’s creation. Because scanner classes are covered in so much detail there, we’ll only briefly summarize the steps here:

	Select luigi.Task or luigi.ExternalTask as your base class. Task allows more flexibility while ExternalTask is great for simple scans.

	Implement the requires, output, and either run (Task) or program_args (ExternalTask) methods

Add Your Scan to a Wrapper (optional)

If you want to run your new scan as part of an existing pipeline, open up pipeline.recon.wrappers and edit one of the existing wrappers (or add your own) to include your new scan. You should be able to import your new scan, and then add a yield MyNewScan(**args) in order to add it to the pipeline. The only gotcha here is that depending on what arguments your scan takes, you may need to strategically place your scan within the wrapper in order to ensure it doesn’t get any arguments that it doesn’t expect.

 Create a New Wrapper Scan

Create a New Wrapper Scan

If for whatever reason you want something other than FullScan, the process for defining a new scan is relatively simple.
The HTBScan is a good example.

	Define your new class, inheriting from luigi.WrapperTask and use the inherits decorator to include any scan you want to utilize

@inherits(SearchsploitScan, AquatoneScan, GobusterScan, WebanalyzeScan)
class HTBScan(luigi.WrapperTask):
 ...

	Include all parameters needed by any of the scans passed to inherits

def requires(self):
 """ HTBScan is a wrapper, as such it requires any Tasks that it wraps. """
 args = {
 "results_dir": self.results_dir,
 "rate": self.rate,
 "target_file": self.target_file,
 "top_ports": self.top_ports,
 "interface": self.interface,
 "ports": self.ports,
 "exempt_list": self.exempt_list,
 "threads": self.threads,
 "proxy": self.proxy,
 "wordlist": self.wordlist,
 "extensions": self.extensions,
 "recursive": self.recursive,
 }
 ...

	yield from each scan, keeping in mind that some of the parameters won’t be universal (i.e. need to be removed/added)

def requires(self):
 """ HTBScan is a wrapper, as such it requires any Tasks that it wraps. """
 ...

 yield GobusterScan(**args)

 # remove options that are gobuster specific; if left dictionary unpacking to other scans throws an exception
 for gobuster_opt in ("proxy", "wordlist", "extensions", "recursive"):
 del args[gobuster_opt]

 # add aquatone scan specific option
 args.update({"scan_timeout": self.scan_timeout})

 yield AquatoneScan(**args)

 del args["scan_timeout"]

 yield SearchsploitScan(**args)
 yield WebanalyzeScan(**args)

 Commands

Commands

recon-pipeline provides a handful of commands:

	tools

	scan

	status

	database

	view

All other available commands are inherited from cmd2 [https://github.com/python-cmd2/cmd2].

tools

Usage: tools [-h] {install, uninstall, reinstall, list} ...

Sub-commands:

install

Install any/all of the libraries/tools necessary to make the recon-pipeline function

tools install [-h]
 {exploitdb, searchsploit, go, amass, webanalyze, waybackurls,
 luigi-service, masscan, subjack, tko-subs, seclists, gobuster,
 aquatone, recursive-gobuster, all}

Positional Arguments

	tool

	Possible choices: exploitdb, searchsploit, go, amass, webanalyze, waybackurls, luigi-service, masscan, subjack, tko-subs, seclists, gobuster, aquatone, recursive-gobuster, all

which tool to install

uninstall

Remove the already installed tool

tools uninstall [-h]
 {exploitdb, searchsploit, go, amass, webanalyze, waybackurls,
 luigi-service, masscan, subjack, tko-subs, seclists, gobuster,
 aquatone, recursive-gobuster, all}

Positional Arguments

	tool

	Possible choices: exploitdb, searchsploit, go, amass, webanalyze, waybackurls, luigi-service, masscan, subjack, tko-subs, seclists, gobuster, aquatone, recursive-gobuster, all

which tool to uninstall

reinstall

Uninstall and then Install a given tool

tools reinstall [-h]
 {exploitdb, searchsploit, go, amass, webanalyze, waybackurls,
 luigi-service, masscan, subjack, tko-subs, seclists, gobuster,
 aquatone, recursive-gobuster, all}

Positional Arguments

	tool

	Possible choices: exploitdb, searchsploit, go, amass, webanalyze, waybackurls, luigi-service, masscan, subjack, tko-subs, seclists, gobuster, aquatone, recursive-gobuster, all

which tool to reinstall

list

Show status of pipeline tools

tools list [-h]

database

Usage: database [-h] {list, delete, attach, detach} ...

Sub-commands:

list

List all known databases

database list [-h]

delete

Delete the selected database

database delete [-h]

attach

Attach to the selected database

database attach [-h]

detach

Detach from the currently attached database

database detach [-h]

scan

Usage: scan [-h] (--target-file TARGET_FILE | --target TARGET)
 [--exempt-list EXEMPT_LIST] [--results-dir RESULTS_DIR]
 [--wordlist WORDLIST] [--interface INTERFACE] [--recursive]
 [--rate RATE] [--top-ports TOP_PORTS | --ports PORTS]
 [--threads THREADS] [--scan-timeout SCAN_TIMEOUT] [--proxy PROXY]
 [--extensions EXTENSIONS] [--sausage] [--local-scheduler]
 [--verbose]
 scantype

Positional Arguments

	scantype

	which type of scan to run

Named Arguments

	--target-file

	file created by the user that defines the target’s scope; list of ips/domains

	--target

	ip or domain to target

	--exempt-list

	list of blacklisted ips/domains

	--results-dir

	directory in which to save scan results (default: recon-results)

Default: “recon-results”

	--wordlist

	path to wordlist used by gobuster (default: /home/docs/.local/recon-pipeline/tools/seclists/Discovery/Web-Content/common.txt)

	--interface

	which interface masscan should use (default: tun0)

	--recursive

	whether or not to recursively gobust (default: False)

Default: False

	--rate

	rate at which masscan should scan (default: 1000)

	--top-ports

	ports to scan as specified by nmap’s list of top-ports (only meaningful to around 5000)

	--ports

	port specification for masscan (all ports example: 1-65535,U:1-65535)

	--threads

	number of threads for all of the threaded applications to use (default: 10)

	--scan-timeout

	scan timeout for aquatone (default: 900)

	--proxy

	proxy for gobuster if desired (ex. 127.0.0.1:8080)

	--extensions

	list of extensions for gobuster (ex. asp,html,aspx)

	--sausage

	open a web browser to Luigi’s central scheduler’s visualization site (see how the sausage is made!)

Default: False

	--local-scheduler

	use the local scheduler instead of the central scheduler (luigid) (default: False)

Default: False

	--verbose

	shows debug messages from luigi, useful for troubleshooting (default: False)

Default: False

status

Usage: status [-h] [--port PORT] [--host HOST]

Named Arguments

	--port

	port on which the luigi central scheduler’s visualization site is running (default: 8082)

Default: “8082”

	--host

	host on which the luigi central scheduler’s visualization site is running (default: localhost)

Default: “127.0.0.1”

view

Usage: view [-h]
 {targets, web-technologies, endpoints, nmap-scans,
 searchsploit-results, ports} ...

Sub-commands:

targets

List all known targets (ipv4/6 & domain names); produced by amass

view targets [-h] [--vuln-to-subdomain-takeover]
 [--type {ipv4, ipv6, domain-name}] [--paged]

Named Arguments

	--vuln-to-subdomain-takeover

	show targets identified as vulnerable to subdomain takeover

Default: False

	--type

	Possible choices: ipv4, ipv6, domain-name

filter by target type

	--paged

	display output page-by-page (default: False)

Default: False

web-technologies

List all known web technologies identified; produced by webanalyze

view web-technologies [-h] [--paged] [--host HOST] [--type TYPE]
 [--product PRODUCT]

Named Arguments

	--paged

	display output page-by-page (default: False)

Default: False

	--host

	filter results by host

	--type

	filter results by type

	--product

	filter results by product

endpoints

List all known endpoints; produced by gobuster

view endpoints [-h] [--headers] [--paged] [--plain]
 [--status-code STATUS_CODE] [--host HOST]

Named Arguments

	--headers

	include headers found at each endpoint (default: False)

Default: False

	--paged

	display output page-by-page (default: False)

Default: False

	--plain

	display without status-codes/color (default: False)

Default: False

	--status-code

	filter results by status code

	--host

	filter results by host

nmap-scans

List all known nmap scan results; produced by nmap

view nmap-scans [-h] [--paged] [--commandline] [--host HOST]
 [--nse-script NSE_SCRIPT] [--port PORT] [--product PRODUCT]

Named Arguments

	--paged

	display output page-by-page (default: False)

Default: False

	--commandline

	display command used to scan (default: False)

Default: False

	--host

	filter results by host

	--nse-script

	filter results by nse script type ran

	--port

	filter results by port scanned

	--product

	filter results by reported product

searchsploit-results

List all known searchsploit hits; produced by searchsploit

view searchsploit-results [-h] [--paged] [--fullpath] [--host HOST]
 [--type TYPE]

Named Arguments

	--paged

	display output page-by-page (default: False)

Default: False

	--fullpath

	display full path to exploit PoC (default: False)

Default: False

	--host

	filter results by host

	--type

	filter results by exploit type

ports

List all known open ports; produced by masscan

view ports [-h] [--paged] [--host HOST] [--port-number PORT_NUMBER]

Named Arguments

	--paged

	display output page-by-page (default: False)

Default: False

	--host

	filter results by host

	--port-number

	filter results by port number

 Database Manager

Database Manager

	
class pipeline.models.db_manager.DBManager(db_location)

	Class that encapsulates database transactions and queries

	
add(item)

	Simple helper to add a record to the database

	
add_ipv4_or_v6_address_to_target(tgt, ipaddr)

	Simple helper that adds an appropriate IPAddress to the given target

	
close()

	Simple helper to close the database session

	
get_all_endpoints()

	Simple helper that returns all Endpoints from the database

	
get_all_exploit_types()

	Simple helper that returns all exploit types reported by searchsploit

	
get_all_hostnames() → list

	Simple helper to return all hostnames from Target records

	
get_all_ipv4_addresses() → list

	Simple helper to return all ipv4 addresses from Target records

	
get_all_ipv6_addresses() → list

	Simple helper to return all ipv6 addresses from Target records

	
get_all_nmap_reported_products()

	Simple helper that returns all products reported by nmap

	
get_all_nse_script_types()

	Simple helper that returns all NSE Script types from the database

	
get_all_port_numbers()

	Simple helper that returns all Port.port_numbers from the database

	
get_all_targets()

	Simple helper to return all ipv4/6 and hostnames produced by running amass

	
get_all_web_targets()

	Simple helper that returns all Targets tagged as having an open web port

	
get_and_filter(model, defaults=None, **kwargs)

	Simple helper to either get an existing record if it exists otherwise create and return a new instance

	
get_endpoint_by_status_code(code)

	Simple helper that returns all Endpoints filtered by status code

	
get_endpoints_by_ip_or_hostname(ip_or_host)

	Simple helper that returns all Endpoints filtered by ip or hostname

	
get_nmap_scans_by_ip_or_hostname(ip_or_host)

	Simple helper that returns all Endpoints filtered by ip or hostname

	
get_or_create(model, **kwargs)

	Simple helper to either get an existing record if it exists otherwise create and return a new instance

	
get_or_create_target_by_ip_or_hostname(ip_or_host)

	Simple helper to query a Target record by either hostname or ip address, whichever works

	
get_ports_by_ip_or_host_and_protocol(ip_or_host, protocol)

	Simple helper that returns all ports based on the given protocol and host

	
get_status_codes()

	Simple helper that returns all status codes found during scanning

 Database Models

Database Models

[image: ../_images/database-design.png]

Target Model

	
class pipeline.models.target_model.Target(**kwargs)

	Database model that describes a target; This is the model that functions as the “top” model.

	Relationships:

	ip_addresses: one to many -> pipeline.models.ip_address_model.IPAddress

open_ports: many to many -> pipeline.models.port_model.Port

nmap_results: one to many -> pipeline.models.nmap_model.NmapResult

searchsploit_results: one to many -> pipeline.models.searchsploit_model.SearchsploitResult

endpoints: one to many -> pipeline.models.endpoint_model.Endpoint

technologies: many to many -> pipeline.models.technology_model.Technology

screenshots: one to many -> pipeline.models.screenshot_model.Screenshot

Endpoint Model

	
class pipeline.models.endpoint_model.Endpoint(**kwargs)

	Database model that describes a URL/endpoint.

Represents gobuster data.

	Relationships:

	target: many to one -> pipeline.models.target_model.Target

headers: many to many -> pipeline.models.header_model.Header

Header Model

	
class pipeline.models.header_model.Header(**kwargs)

	Database model that describes an http header (i.e. Server=cloudflare).

	Relationships:

	endpoints: many to many -> pipeline.models.target_model.Endpoint

IP Address Model

	
class pipeline.models.ip_address_model.IPAddress(**kwargs)

	Database model that describes an ip address (ipv4 or ipv6).

Represents amass data or targets specified manually as part of the target-file.

	Relationships:

	target: many to one -> pipeline.models.target_model.Target

Nmap Model

	
class pipeline.models.nmap_model.NmapResult(**kwargs)

	Database model that describes the TARGET.nmap scan results.

Represents nmap data.

	Relationships:

	target: many to one -> pipeline.models.target_model.Target

ip_address: one to one -> pipeline.models.ip_address_model.IPAddress

port: one to one -> pipeline.models.port_model.Port

nse_results: one to many -> pipeline.models.nse_model.NSEResult

Nmap Scripting Engine Model

	
class pipeline.models.nse_model.NSEResult(**kwargs)

	Database model that describes the NSE script executions as part of an nmap scan.

Represents NSE script data.

	Relationships:

	NmapResult: many to many -> pipeline.models.nmap_model.NmapResult

Port Model

	
class pipeline.models.port_model.Port(**kwargs)

	Database model that describes a port (tcp or udp).

	Relationships:

	targets: many to many -> pipeline.models.target_model.Target

Screenshot Model

	
class pipeline.models.screenshot_model.Screenshot(**kwargs)

	Database model that describes a screenshot of a given webpage hosted on a Target.

Represents aquatone data.

	Relationships:

	port: one to one -> pipeline.models.port_model.Port

target: many to one -> pipeline.models.target_model.Target

endpoint: one to one -> pipeline.models.endpoint_model.Endpoint

similar_pages: black magic -> pipeline.models.screenshot_model.Screenshot

Searchsploit Model

	
class pipeline.models.searchsploit_model.SearchsploitResult(**kwargs)

	Database model that describes results from running searchsploit –nmap TARGET.xml.

Represents searchsploit data.

	Relationships:

	target: many to one -> pipeline.models.target_model.Target

Technology Model

	
class pipeline.models.technology_model.Technology(**kwargs)

	Database model that describes a web technology (i.e. Nginx 1.14).

Represents webanalyze data.

	Relationships:

	targets: many to many -> pipeline.models.target_model.Target

 Parsers

Parsers

Amass Parser

	
class pipeline.recon.amass.ParseAmassOutput(*args, **kwargs)

	Read amass JSON results and create categorized entries into ip|subdomain files.

	Parameters

	
	db_location – specifies the path to the database used for storing results Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output files for this task.

	Returns

	luigi.contrib.sqla.SQLAlchemyTarget

	
requires()

	ParseAmassOutput depends on AmassScan to run.

TargetList expects target_file as a parameter.
AmassScan accepts exempt_list as an optional parameter.

	Returns

	luigi.ExternalTask - TargetList

	
run()

	Parse the json file produced by AmassScan and categorize the results into ip|subdomain files.

	An example (prettified) entry from the json file is shown below

	
	{

	“Timestamp”: “2019-09-22T19:20:13-05:00”,
“name”: “beta-partners.tesla.com”,
“domain”: “tesla.com”,
“addresses”: [

	{

	“ip”: “209.133.79.58”,
“cidr”: “209.133.79.0/24”,
“asn”: 394161,
“desc”: “TESLA - Tesla”

}

],
“tag”: “ext”,
“source”: “Previous Enum”

}

Web Targets Parser

	
class pipeline.recon.web.targets.GatherWebTargets(*args, **kwargs)

	Gather all subdomains as well as any ip addresses known to have a configured web port open.

	Parameters

	
	db_location – specifies the path to the database used for storing results Required by upstream Task

	exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional by upstream Task

	top_ports – Scan top N most popular ports Required by upstream Task

	ports – specifies the port(s) to be scanned Required by upstream Task

	interface – use the named raw network interface, such as “eth0” Required by upstream Task

	rate – desired rate for transmitting packets (packets per second) Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output for this task.

	Returns

	luigi.contrib.sqla.SQLAlchemyTarget

	
requires()

	GatherWebTargets depends on ParseMasscanOutput and ParseAmassOutput to run.

ParseMasscanOutput expects rate, target_file, interface, and either ports or top_ports as parameters.
ParseAmassOutput accepts exempt_list and expects target_file

	Returns

	ParseMasscanOutput, str: ParseAmassOutput)

	Return type

	dict(str

	
run()

	Gather all potential web targets and tag them as web in the database.

Masscan Parser

	
class pipeline.recon.masscan.ParseMasscanOutput(*args, **kwargs)

	Read masscan JSON results and create a pickled dictionary of pertinent information for processing.

	Parameters

	
	top_ports – Scan top N most popular ports Required by upstream Task

	ports – specifies the port(s) to be scanned Required by upstream Task

	interface – use the named raw network interface, such as “eth0” Required by upstream Task

	rate – desired rate for transmitting packets (packets per second) Required by upstream Task

	db_location – specifies the path to the database used for storing results Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output for this task.

Naming convention for the output file is masscan.TARGET_FILE.parsed.pickle.

	Returns

	luigi.local_target.LocalTarget

	
requires()

	ParseMasscanOutput depends on Masscan to run.

Masscan expects rate, target_file, interface, and either ports or top_ports as parameters.

	Returns

	luigi.Task - Masscan

	
run()

	Reads masscan JSON results and creates a pickled dictionary of pertinent information for processing.

 Scanners

Scanners

Amass Scanner

	
class pipeline.recon.amass.AmassScan(*args, **kwargs)

	Run amass scan to perform subdomain enumeration of given domain(s).

Note

Expects TARGET_FILE.domains file to be a text file with one top-level domain per line.

	Install:

	sudo apt-get install -y -q amass

	Basic Example:

	amass enum -ip -brute -active -min-for-recursive 3 -df tesla -json amass.tesla.json

	Luigi Example:

	PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.amass AmassScan --target-file tesla

	Parameters

	
	exempt_list – Path to a file providing blacklisted subdomains, one per line.

	db_location – specifies the path to the database used for storing results Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output for this task.

Naming convention for the output file is amass.json.

	Returns

	luigi.local_target.LocalTarget

	
requires()

	AmassScan depends on TargetList to run.

TargetList expects target_file as a parameter.

	Returns

	luigi.ExternalTask - TargetList

	
run()

	Defines the options/arguments sent to amass after processing.

	Returns

	list of options/arguments, beginning with the name of the executable to run

	Return type

	list

Aquatone Scanner

	
class pipeline.recon.web.aquatone.AquatoneScan(*args, **kwargs)

	Screenshot all web targets and generate HTML report.

	Install:

	mkdir /tmp/aquatone
wget -q https://github.com/michenriksen/aquatone/releases/download/v1.7.0/aquatone_linux_amd64_1.7.0.zip -O /tmp/aquatone/aquatone.zip
unzip /tmp/aquatone/aquatone.zip -d /tmp/aquatone
sudo mv /tmp/aquatone/aquatone /usr/local/bin/aquatone
rm -rf /tmp/aquatone

	Basic Example:

	aquatone commands are structured like the example below.

cat webtargets.tesla.txt | /opt/aquatone -scan-timeout 900 -threads 20

	Luigi Example:

	PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.aquatone AquatoneScan --target-file tesla --top-ports 1000

	Parameters

	
	threads – number of threads for parallel aquatone command execution

	scan_timeout – timeout in miliseconds for aquatone port scans

	db_location – specifies the path to the database used for storing results Required by upstream Task

	exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional by upstream Task

	top_ports – Scan top N most popular ports Required by upstream Task

	ports – specifies the port(s) to be scanned Required by upstream Task

	interface – use the named raw network interface, such as “eth0” Required by upstream Task

	rate – desired rate for transmitting packets (packets per second) Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output for this task.

	Returns

	luigi.contrib.sqla.SQLAlchemyTarget

	
parse_results()

	Read in aquatone’s .json file and update the associated Target record

	
requires()

	AquatoneScan depends on GatherWebTargets to run.

	GatherWebTargets accepts exempt_list and expects rate, target_file, interface,

	and either ports or top_ports as parameters

	Returns

	luigi.Task - GatherWebTargets

	
run()

	Defines the options/arguments sent to aquatone after processing.

cat webtargets.tesla.txt | /opt/aquatone -scan-timeout 900 -threads 20

	Returns

	list of options/arguments, beginning with the name of the executable to run

	Return type

	list

Full Scanner

	
class pipeline.recon.wrappers.FullScan(*args, **kwargs)

	Wraps multiple scan types in order to run tasks on the same hierarchical level at the same time.

Note

Because FullScan is a wrapper, it requires all Parameters for any of the Scans that it wraps.

	Parameters

	
	threads – number of threads for parallel gobuster command execution

	wordlist – wordlist used for forced browsing

	extensions – additional extensions to apply to each item in the wordlist

	recursive – whether or not to recursively gobust the target (may produce a LOT of traffic… quickly)

	proxy – protocol://ip:port proxy specification for gobuster

	exempt_list – Path to a file providing blacklisted subdomains, one per line.

	top_ports – Scan top N most popular ports

	ports – specifies the port(s) to be scanned

	interface – use the named raw network interface, such as “eth0”

	rate – desired rate for transmitting packets (packets per second)

	target_file – specifies the file on disk containing a list of ips or domains

	results_dir – specifes the directory on disk to which all Task results are written

	
requires()

	FullScan is a wrapper, as such it requires any Tasks that it wraps.

Gobuster Scanner

	
class pipeline.recon.web.gobuster.GobusterScan(*args, **kwargs)

	Use gobuster to perform forced browsing.

	Install:

	go get github.com/OJ/gobuster
git clone https://github.com/epi052/recursive-gobuster.git

	Basic Example:

	gobuster dir -q -e -k -t 20 -u www.tesla.com -w /usr/share/seclists/Discovery/Web-Content/common.txt -p http://127.0.0.1:8080 -o gobuster.tesla.txt -x php,html

	Luigi Example:

	PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.gobuster GobusterScan --target-file tesla --top-ports 1000 --interface eth0 --proxy http://127.0.0.1:8080 --extensions php,html --wordlist /usr/share/seclists/Discovery/Web-Content/common.txt --threads 20

	Parameters

	
	threads – number of threads for parallel gobuster command execution

	wordlist – wordlist used for forced browsing

	extensions – additional extensions to apply to each item in the wordlist

	recursive – whether or not to recursively gobust the target (may produce a LOT of traffic… quickly)

	proxy – protocol://ip:port proxy specification for gobuster

	exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional by upstream Task

	db_location – specifies the path to the database used for storing results Required by upstream Task

	top_ports – Scan top N most popular ports Required by upstream Task

	ports – specifies the port(s) to be scanned Required by upstream Task

	interface – use the named raw network interface, such as “eth0” Required by upstream Task

	rate – desired rate for transmitting packets (packets per second) Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output for this task.

If recursion is disabled, the naming convention for the output file is gobuster.TARGET_FILE.txt
Otherwise the output file is recursive-gobuster_TARGET_FILE.log

Results are stored in their own directory: gobuster-TARGET_FILE-results

	Returns

	luigi.local_target.LocalTarget

	
parse_results()

	Reads in each individual gobuster file and adds each line to the database as an Endpoint

	
requires()

	GobusterScan depends on GatherWebTargets to run.

	GatherWebTargets accepts exempt_list and expects rate, target_file, interface,

	and either ports or top_ports as parameters

	Returns

	luigi.Task - GatherWebTargets

	
run()

	Defines the options/arguments sent to gobuster after processing.

	Returns

	list of options/arguments, beginning with the name of the executable to run

	Return type

	list

Hackthebox Scanner

	
class pipeline.recon.wrappers.HTBScan(*args, **kwargs)

	Wraps multiple scan types in order to run tasks on the same hierarchical level at the same time.

Note

Because HTBScan is a wrapper, it requires all Parameters for any of the Scans that it wraps.

	Parameters

	
	threads – number of threads for parallel gobuster command execution

	wordlist – wordlist used for forced browsing

	extensions – additional extensions to apply to each item in the wordlist

	recursive – whether or not to recursively gobust the target (may produce a LOT of traffic… quickly)

	proxy – protocol://ip:port proxy specification for gobuster

	exempt_list – Path to a file providing blacklisted subdomains, one per line.

	top_ports – Scan top N most popular ports

	ports – specifies the port(s) to be scanned

	interface – use the named raw network interface, such as “eth0”

	rate – desired rate for transmitting packets (packets per second)

	target_file – specifies the file on disk containing a list of ips or domains

	results_dir – specifes the directory on disk to which all Task results are written

	
requires()

	HTBScan is a wrapper, as such it requires any Tasks that it wraps.

Masscan Scanner

	
class pipeline.recon.masscan.MasscanScan(*args, **kwargs)

	Run masscan against a target specified via the TargetList Task.

Note

When specified, --top_ports is processed and then ultimately passed to --ports.

	Install:

	git clone https://github.com/robertdavidgraham/masscan /tmp/masscan
make -s -j -C /tmp/masscan
sudo mv /tmp/masscan/bin/masscan /usr/local/bin/masscan
rm -rf /tmp/masscan

	Basic Example:

	masscan -v --open-only --banners --rate 1000 -e tun0 -oJ masscan.tesla.json --ports 80,443,22,21 -iL tesla.ips

	Luigi Example:

	PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.masscan Masscan --target-file tesla --ports 80,443,22,21

	Parameters

	
	rate – desired rate for transmitting packets (packets per second)

	interface – use the named raw network interface, such as “eth0”

	top_ports – Scan top N most popular ports

	ports – specifies the port(s) to be scanned

	db_location – specifies the path to the database used for storing results Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional by upstream Task

	
output()

	Returns the target output for this task.

Naming convention for the output file is masscan.TARGET_FILE.json.

	Returns

	luigi.local_target.LocalTarget

	
run()

	Defines the options/arguments sent to masscan after processing.

	Returns

	list of options/arguments, beginning with the name of the executable to run

	Return type

	list

Searchsploit Scanner

	
class pipeline.recon.nmap.SearchsploitScan(*args, **kwargs)

	Run searchcploit against each nmap*.xml file in the TARGET-nmap-results directory and write results to disk.

	Install:

	searchcploit is already on your system if you’re using kali. If you’re not using kali, refer to your own
distributions instructions for installing searchcploit.

	Basic Example:

	searchsploit --nmap htb-targets-nmap-results/nmap.10.10.10.155-tcp.xml

	Luigi Example:

	PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.nmap Searchsploit --target-file htb-targets --top-ports 5000

	Parameters

	
	threads – number of threads for parallel nmap command execution Required by upstream Task

	db_location – specifies the path to the database used for storing results Required by upstream Task

	rate – desired rate for transmitting packets (packets per second) Required by upstream Task

	interface – use the named raw network interface, such as “eth0” Required by upstream Task

	top_ports – Scan top N most popular ports Required by upstream Task

	ports – specifies the port(s) to be scanned Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifies the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output for this task.

Naming convention for the output folder is TARGET_FILE-searchsploit-results.

The output folder will be populated with all of the output files generated by
any searchsploit commands run.

	Returns

	luigi.local_target.LocalTarget

	
requires()

	Searchsploit depends on ThreadedNmap to run.

TargetList expects target_file, results_dir, and db_location as parameters.
Masscan expects rate, target_file, interface, and either ports or top_ports as parameters.
ThreadedNmap expects threads

	Returns

	luigi.Task - ThreadedNmap

	
run()

	Grabs the xml files created by ThreadedNmap and runs searchsploit –nmap on each one, saving the output.

Subjack Scanner

	
class pipeline.recon.web.subdomain_takeover.SubjackScan(*args, **kwargs)

	Use subjack to scan for potential subdomain takeovers.

	Install:

	go get github.com/haccer/subjack
cd ~/go/src/github.com/haccer/subjack
go build
go install

	Basic Example:

	subjack -w webtargets.tesla.txt -t 100 -timeout 30 -o subjack.tesla.txt -ssl

	Luigi Example:

	PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.subdomain_takeover SubjackScan --target-file tesla --top-ports 1000 --interface eth0

	Parameters

	
	threads – number of threads for parallel subjack command execution

	db_location – specifies the path to the database used for storing results Required by upstream Task

	exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional by upstream Task

	top_ports – Scan top N most popular ports Required by upstream Task

	ports – specifies the port(s) to be scanned Required by upstream Task

	interface – use the named raw network interface, such as “eth0” Required by upstream Task

	rate – desired rate for transmitting packets (packets per second) Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output for this task.

	Returns

	luigi.contrib.sqla.SQLAlchemyTarget

	
parse_results()

	Reads in the subjack’s subjack.txt file and updates the associated Target record.

	
requires()

	SubjackScan depends on GatherWebTargets to run.

	GatherWebTargets accepts exempt_list and expects rate, target_file, interface,

	and either ports or top_ports as parameters

	Returns

	luigi.Task - GatherWebTargets

	
run()

	Defines the options/arguments sent to subjack after processing.

	Returns

	list of options/arguments, beginning with the name of the executable to run

	Return type

	list

ThreadedNmap Scanner

	
class pipeline.recon.nmap.ThreadedNmapScan(*args, **kwargs)

	Run nmap against specific targets and ports gained from the ParseMasscanOutput Task.

	Install:

	nmap is already on your system if you’re using kali. If you’re not using kali, refer to your own
distributions instructions for installing nmap.

	Basic Example:

	nmap --open -sT -sC -T 4 -sV -Pn -p 43,25,21,53,22 -oA htb-targets-nmap-results/nmap.10.10.10.155-tcp 10.10.10.155

	Luigi Example:

	PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.nmap ThreadedNmap --target-file htb-targets --top-ports 5000

	Parameters

	
	threads – number of threads for parallel nmap command execution

	db_location – specifies the path to the database used for storing results Required by upstream Task

	rate – desired rate for transmitting packets (packets per second) Required by upstream Task

	interface – use the named raw network interface, such as “eth0” Required by upstream Task

	top_ports – Scan top N most popular ports Required by upstream Task

	ports – specifies the port(s) to be scanned Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output for this task.

Naming convention for the output folder is TARGET_FILE-nmap-results.

The output folder will be populated with all of the output files generated by
any nmap commands run. Because the nmap command uses -oA, there will be three
files per target scanned: .xml, .nmap, .gnmap.

	Returns

	luigi.local_target.LocalTarget

	
parse_nmap_output()

	Read nmap .xml results and add entries into specified database

	
requires()

	ThreadedNmap depends on ParseMasscanOutput to run.

TargetList expects target_file, results_dir, and db_location as parameters.
Masscan expects rate, target_file, interface, and either ports or top_ports as parameters.

	Returns

	luigi.Task - ParseMasscanOutput

	
run()

	Parses pickled target info dictionary and runs targeted nmap scans against only open ports.

TKOSubs Scanner

	
class pipeline.recon.web.subdomain_takeover.TKOSubsScan(*args, **kwargs)

	Use tko-subs to scan for potential subdomain takeovers.

	Install:

	go get github.com/anshumanbh/tko-subs
cd ~/go/src/github.com/anshumanbh/tko-subs
go build
go install

	Basic Example:

	tko-subs -domains=tesla.subdomains -data=/root/go/src/github.com/anshumanbh/tko-subs/providers-data.csv -output=tkosubs.tesla.csv

	Luigi Example:

	PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.subdomain_takeover TKOSubsScan --target-file tesla --top-ports 1000 --interface eth0

	Parameters

	
	db_location – specifies the path to the database used for storing results Required by upstream Task

	exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional by upstream Task

	top_ports – Scan top N most popular ports Required by upstream Task

	ports – specifies the port(s) to be scanned Required by upstream Task

	interface – use the named raw network interface, such as “eth0” Required by upstream Task

	rate – desired rate for transmitting packets (packets per second) Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output for this task.

	Returns

	luigi.contrib.sqla.SQLAlchemyTarget

	
parse_results()

	Reads in the tkosubs .csv file and updates the associated Target record.

	
requires()

	TKOSubsScan depends on GatherWebTargets to run.

	GatherWebTargets accepts exempt_list and expects rate, target_file, interface,

	and either ports or top_ports as parameters

	Returns

	luigi.Task - GatherWebTargets

	
run()

	Defines the options/arguments sent to tko-subs after processing.

	Returns

	list of options/arguments, beginning with the name of the executable to run

	Return type

	list

WaybackurlsScan Scanner

	
class pipeline.recon.web.waybackurls.WaybackurlsScan(*args, **kwargs)

	Fetch known URLs from the Wayback Machine, Common Crawl, and Virus Total for historic data about the target.

	Install:

	go get github.com/tomnomnom/waybackurls

	Basic Example:

	waybackurls commands are structured like the example below.

cat domains.txt | waybackurls > urls

	Luigi Example:

	PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.waybackurls WaybackurlsScan --target-file tesla --top-ports 1000

	Parameters

	
	db_location – specifies the path to the database used for storing results Required by upstream Task

	exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional by upstream Task

	top_ports – Scan top N most popular ports Required by upstream Task

	ports – specifies the port(s) to be scanned Required by upstream Task

	interface – use the named raw network interface, such as “eth0” Required by upstream Task

	rate – desired rate for transmitting packets (packets per second) Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output for this task.

	Returns

	luigi.contrib.sqla.SQLAlchemyTarget

	
requires()

	WaybackurlsScan depends on GatherWebTargets to run.

	GatherWebTargets accepts exempt_list and expects rate, target_file, interface,

	and either ports or top_ports as parameters

	Returns

	luigi.Task - GatherWebTargets

	
run()

	Defines the options/arguments sent to waybackurls after processing.

Webanalyze Scanner

	
class pipeline.recon.web.webanalyze.WebanalyzeScan(*args, **kwargs)

	Use webanalyze to determine the technology stack on the given target(s).

	Install:

	go get -u github.com/rverton/webanalyze

loads new apps.json file from wappalyzer project
webanalyze -update

	Basic Example:

	webanalyze -host www.tesla.com -output json

	Luigi Example:

	PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.webanalyze WebanalyzeScan --target-file tesla --top-ports 1000 --interface eth0

	Parameters

	
	threads – number of threads for parallel webanalyze command execution

	db_location – specifies the path to the database used for storing results Required by upstream Task

	exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional for upstream Task

	top_ports – Scan top N most popular ports Required by upstream Task

	ports – specifies the port(s) to be scanned Required by upstream Task

	interface – use the named raw network interface, such as “eth0” Required by upstream Task

	rate – desired rate for transmitting packets (packets per second) Required by upstream Task

	target_file – specifies the file on disk containing a list of ips or domains Required by upstream Task

	results_dir – specifes the directory on disk to which all Task results are written Required by upstream Task

	
output()

	Returns the target output for this task.

	Returns

	luigi.contrib.sqla.SQLAlchemyTarget

	
parse_results()

	Reads in the webanalyze’s .csv files and updates the associated Target record.

	
requires()

	WebanalyzeScan depends on GatherWebTargets to run.

	GatherWebTargets accepts exempt_list and expects rate, target_file, interface,

	and either ports or top_ports as parameters

	Returns

	luigi.Task - GatherWebTargets

	
run()

	Defines the options/arguments sent to webanalyze after processing.

	Returns

	list of options/arguments, beginning with the name of the executable to run

	Return type

	list

 Index

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	add() (pipeline.models.db_manager.DBManager method)

 	add_ipv4_or_v6_address_to_target() (pipeline.models.db_manager.DBManager method)

 	
 	AmassScan (class in pipeline.recon.amass)

 	AquatoneScan (class in pipeline.recon.web.aquatone)

C

 	
 	close() (pipeline.models.db_manager.DBManager method)

D

 	
 	DBManager (class in pipeline.models.db_manager)

E

 	
 	Endpoint (class in pipeline.models.endpoint_model)

F

 	
 	FullScan (class in pipeline.recon.wrappers)

G

 	
 	GatherWebTargets (class in pipeline.recon.web.targets)

 	get_all_endpoints() (pipeline.models.db_manager.DBManager method)

 	get_all_exploit_types() (pipeline.models.db_manager.DBManager method)

 	get_all_hostnames() (pipeline.models.db_manager.DBManager method)

 	get_all_ipv4_addresses() (pipeline.models.db_manager.DBManager method)

 	get_all_ipv6_addresses() (pipeline.models.db_manager.DBManager method)

 	get_all_nmap_reported_products() (pipeline.models.db_manager.DBManager method)

 	get_all_nse_script_types() (pipeline.models.db_manager.DBManager method)

 	get_all_port_numbers() (pipeline.models.db_manager.DBManager method)

 	get_all_targets() (pipeline.models.db_manager.DBManager method)

 	
 	get_all_web_targets() (pipeline.models.db_manager.DBManager method)

 	get_and_filter() (pipeline.models.db_manager.DBManager method)

 	get_endpoint_by_status_code() (pipeline.models.db_manager.DBManager method)

 	get_endpoints_by_ip_or_hostname() (pipeline.models.db_manager.DBManager method)

 	get_nmap_scans_by_ip_or_hostname() (pipeline.models.db_manager.DBManager method)

 	get_or_create() (pipeline.models.db_manager.DBManager method)

 	get_or_create_target_by_ip_or_hostname() (pipeline.models.db_manager.DBManager method)

 	get_ports_by_ip_or_host_and_protocol() (pipeline.models.db_manager.DBManager method)

 	get_status_codes() (pipeline.models.db_manager.DBManager method)

 	GobusterScan (class in pipeline.recon.web.gobuster)

H

 	
 	Header (class in pipeline.models.header_model)

 	
 	HTBScan (class in pipeline.recon.wrappers)

I

 	
 	IPAddress (class in pipeline.models.ip_address_model)

M

 	
 	MasscanScan (class in pipeline.recon.masscan)

N

 	
 	NmapResult (class in pipeline.models.nmap_model)

 	
 	NSEResult (class in pipeline.models.nse_model)

O

 	
 	output() (pipeline.recon.amass.AmassScan method)

 	(pipeline.recon.amass.ParseAmassOutput method)

 	(pipeline.recon.masscan.MasscanScan method)

 	(pipeline.recon.masscan.ParseMasscanOutput method)

 	(pipeline.recon.nmap.SearchsploitScan method)

 	(pipeline.recon.nmap.ThreadedNmapScan method)

 	(pipeline.recon.web.aquatone.AquatoneScan method)

 	(pipeline.recon.web.gobuster.GobusterScan method)

 	(pipeline.recon.web.subdomain_takeover.SubjackScan method)

 	(pipeline.recon.web.subdomain_takeover.TKOSubsScan method)

 	(pipeline.recon.web.targets.GatherWebTargets method)

 	(pipeline.recon.web.waybackurls.WaybackurlsScan method)

 	(pipeline.recon.web.webanalyze.WebanalyzeScan method)

P

 	
 	parse_nmap_output() (pipeline.recon.nmap.ThreadedNmapScan method)

 	parse_results() (pipeline.recon.web.aquatone.AquatoneScan method)

 	(pipeline.recon.web.gobuster.GobusterScan method)

 	(pipeline.recon.web.subdomain_takeover.SubjackScan method)

 	(pipeline.recon.web.subdomain_takeover.TKOSubsScan method)

 	(pipeline.recon.web.webanalyze.WebanalyzeScan method)

 	
 	ParseAmassOutput (class in pipeline.recon.amass)

 	ParseMasscanOutput (class in pipeline.recon.masscan)

 	Port (class in pipeline.models.port_model)

R

 	
 	requires() (pipeline.recon.amass.AmassScan method)

 	(pipeline.recon.amass.ParseAmassOutput method)

 	(pipeline.recon.masscan.ParseMasscanOutput method)

 	(pipeline.recon.nmap.SearchsploitScan method)

 	(pipeline.recon.nmap.ThreadedNmapScan method)

 	(pipeline.recon.web.aquatone.AquatoneScan method)

 	(pipeline.recon.web.gobuster.GobusterScan method)

 	(pipeline.recon.web.subdomain_takeover.SubjackScan method)

 	(pipeline.recon.web.subdomain_takeover.TKOSubsScan method)

 	(pipeline.recon.web.targets.GatherWebTargets method)

 	(pipeline.recon.web.waybackurls.WaybackurlsScan method)

 	(pipeline.recon.web.webanalyze.WebanalyzeScan method)

 	(pipeline.recon.wrappers.FullScan method)

 	(pipeline.recon.wrappers.HTBScan method)

 	
 	run() (pipeline.recon.amass.AmassScan method)

 	(pipeline.recon.amass.ParseAmassOutput method)

 	(pipeline.recon.masscan.MasscanScan method)

 	(pipeline.recon.masscan.ParseMasscanOutput method)

 	(pipeline.recon.nmap.SearchsploitScan method)

 	(pipeline.recon.nmap.ThreadedNmapScan method)

 	(pipeline.recon.web.aquatone.AquatoneScan method)

 	(pipeline.recon.web.gobuster.GobusterScan method)

 	(pipeline.recon.web.subdomain_takeover.SubjackScan method)

 	(pipeline.recon.web.subdomain_takeover.TKOSubsScan method)

 	(pipeline.recon.web.targets.GatherWebTargets method)

 	(pipeline.recon.web.waybackurls.WaybackurlsScan method)

 	(pipeline.recon.web.webanalyze.WebanalyzeScan method)

S

 	
 	Screenshot (class in pipeline.models.screenshot_model)

 	SearchsploitResult (class in pipeline.models.searchsploit_model)

 	
 	SearchsploitScan (class in pipeline.recon.nmap)

 	SubjackScan (class in pipeline.recon.web.subdomain_takeover)

T

 	
 	Target (class in pipeline.models.target_model)

 	Technology (class in pipeline.models.technology_model)

 	
 	ThreadedNmapScan (class in pipeline.recon.