
recon-pipeline
Release 0.7.3

Sep 26, 2020

Contents

1 Getting Started 3
1.1 Getting Started . 3

2 Personalization 23
2.1 Making Changes to the pipeline . 23

3 API Reference 27
3.1 Commands . 27
3.2 Database Manager . 33
3.3 Database Models . 35
3.4 Parsers . 37
3.5 Scanners . 40

4 Indices and tables 53

Index 55

i

ii

recon-pipeline, Release 0.7.3

recon-pipeline was designed to chain together multiple security tools as part of a Flow-Based Programming
paradigm. Each component is part of a network of “black box” processes. These components exchange data between
each other and can be reconnected in different ways to form different applications without any internal changes.

Contents 1

recon-pipeline, Release 0.7.3

2 Contents

CHAPTER 1

Getting Started

There are an accompanying set of blog posts detailing the development process and underpinnings of the pipeline.
Feel free to check them out if you’re so inclined, but they’re in no way required reading to use the tool.

• Installation Instructions - How to install recon-pipeline and associated dependencies

• Defining Target Scope - How to define the scope of your scans (list of targets and a blacklist)

• Running Scans - Example scan of tesla.com using recon-pipeline

• Viewing Scan Results - How to view scan results

• Using a Scheduler - The Luigi schedulers and which to choose

• Visualizing Tasks - How to check on active tasks once they’re running

1.1 Getting Started

1.1.1 Installation Instructions

There are two primary phases for installation:

• prior to the python dependencies being installed

• everything else

Manual Steps

First, the steps to get python dependencies installed in a virtual environment are as follows (and shown below)

3

https://epi052.gitlab.io/notes-to-self/blog/2019-09-01-how-to-build-an-automated-recon-pipeline-with-python-and-luigi/

recon-pipeline, Release 0.7.3

Kali

sudo apt update
sudo apt install pipenv

Ubuntu 18.04/20.04

sudo apt update
sudo apt install python3-pip
pip install --user pipenv
echo "PATH=${PATH}:~/.local/bin" >> ~/.bashrc
bash

Both OSs After pipenv Install

git clone https://github.com/epi052/recon-pipeline.git
cd recon-pipeline
pipenv install
pipenv shell

Everything Else

After installing the python dependencies, the recon-pipeline shell provides its own tools command (seen below). A
simple tools install all will handle all installation steps. Installation has only been tested on Kali 2019.4
and Ubuntu 18.04/20.04.

Ubuntu Note (and newer kali versions): You may consider running sudo -v prior to running ./
recon-pipeline.py. sudo -v will refresh your creds, and the underlying subprocess calls during
installation won’t prompt you for your password. It’ll work either way though.

Individual tools may be installed by running tools install TOOLNAME where TOOLNAME is one of the known
tools that make up the pipeline.

The installer does not maintain state. In order to determine whether a tool is installed or not, it checks the path variable
defined in the tool’s .yaml file. The installer in no way attempts to be a package manager. It knows how to execute the
steps necessary to install and remove its tools. Beyond that, it’s like Jon Snow, it knows nothing.

Current tool status can be viewed using tools list. Tools can also be uninstalled using the tools uninstall
all command. It is also possible to individually uninstall them in the same manner as shown above.

Alternative Distros

In v0.8.1, an effort was made to remove OS specific installation steps from the installer. However, if you’re using an
untested distribution (i.e. not Kali/Ubuntu 18.04/20.04), meeting the criteria below should be sufficient for the auto
installer to function:

• systemd-based system (luigid is installed as a systemd service)

• python3.6+ installed

With the above requirements met, following the installation steps above starting with pipenv install should be
sufficient.

4 Chapter 1. Getting Started

recon-pipeline, Release 0.7.3

The alternative would be to manually install each tool.

Docker

If you have Docker installed, you can run the recon-pipeline in a container with the following commands:

git clone https://github.com/epi052/recon-pipeline.git
cd recon-pipeline
docker build -t recon-pipeline .
docker run -d \

-v ~/docker/recon-pipeline:/root/.local/recon-pipeline \
-p 8082:8082 \
--name recon-pipeline \
recon-pipeline

It is important to note that you should not lose any data during an update because all important information is saved to
the ~/docker/recon-pipeline location as specified by the -v option in the docker run command. If this
portion of the command was not executed, data will not persist across container installations.

At this point the container should be running and you scan enter the shell with the following command:

docker exec -it recon-pipeline pipeline

Starting & Stopping

In the event that you need to start or stop the container, you can do so with the following commands after having run
the installation commands above once:

docker start recon-pipeline
docker stop recon-pipeline

This is useful knowledge because Docker containers do not normally start on their own and executing the docker
run command above again will result in an error if it is already installed.

Update

To update, you can run the following commands from inside the recon-pipeline folder cloned in the installation:

git pull
docker stop recon-pipeline
docker rm recon-pipeline

When complete, execute the inital installation commands again starting with docker build.

1.1.2 Defining Target Scope

New in v0.9.0: In the event you’re scanning a single ip address or host, simply use --target. It accepts a single
target and works in conjunction with --exempt-list if specified.

[db-1] recon-pipeline> scan HTBScan --target 10.10.10.183 --top-ports 1000
...

1.1. Getting Started 5

recon-pipeline, Release 0.7.3

In order to scan more than one host at a time, the pipeline needs a file that describes the target’s scope to be provided
as an argument to the –target-file option. The target file can consist of domains, ip addresses, and ip ranges, one per
line.

In order to scan more than one host at a time, the pipeline expects a file that describes the target’s scope to be provided
as an argument to the --target-file option. The target file can consist of domains, ip addresses, and ip ranges,
one per line. Domains, ip addresses and ip ranges can be mixed/matched within the scope file.

tesla.com
tesla.cn
teslamotors.com
...

Some bug bounty scopes have expressly verboten subdomains and/or top-level domains, for that there is the
--exempt-list option. The exempt list follows the same rules as the target file.

shop.eu.teslamotors.com
energysupport.tesla.com
feedback.tesla.com
...

1.1.3 Running Scans

All scans are run from within recon-pipeline’s shell. There are a number of individual scans, however to execute
multiple scans at once, recon-pipeline includes wrappers around multiple commands. As of version 0.7.3, the
following individual scans are available

• pipeline.recon.amass.AmassScan

• pipeline.recon.web.aquatone.AquatoneScan

• pipeline.recon.web.gobuster.GobusterScan

• pipeline.recon.masscan.MasscanScan

• pipeline.recon.nmap.SearchsploitScan

• pipeline.recon.web.subdomain_takeover.SubjackScan

• pipeline.recon.nmap.ThreadedNmapScan

• pipeline.recon.web.subdomain_takeover.TKOSubsScan

• pipeline.recon.web.waybackurls.WaybackurlsScan

• pipeline.recon.web.webanalyze.WebanalyzeScan

Additionally, two wrapper scans are made available. These execute multiple scans in a pipeline.

• pipeline.recon.wrappers.FullScan - runs the entire pipeline

• pipeline.recon.wrappers.HTBScan - nicety for hackthebox players (myself included) that omits the
scans in FullScan that don’t make sense for HTB

Example Scan

Here are the steps the video below takes to scan tesla[.]com.

Create a targetfile

6 Chapter 1. Getting Started

recon-pipeline, Release 0.7.3

use virtual environment
pipenv shell

create targetfile; a targetfile is required for all scans
mkdir /root/bugcrowd/tesla
cd /root/bugcrowd/tesla
echo tesla.com > tesla-targetfile

create a blacklist (if necessary based on target's scope)
echo energysupport.tesla.com > tesla-blacklist
echo feedback.tesla.com >> tesla-blacklist
echo employeefeedback.tesla.com >> tesla-blacklist
echo ir.tesla.com >> tesla-blacklist

drop into the interactive shell
/root/PycharmProjects/recon-pipeline/pipeline/recon-pipeline.py
recon-pipeline>

New as of v0.9.0: In the event you’re scanning a single ip address or host, simply use --target. It accepts a single
target and works in conjunction with --exempt-list if specified.

Create a new database to store scan results

recon-pipeline> database attach
1. create new database

Your choice? 1
new database name? (recommend something unique for this target)
-> tesla-scan
[*] created database @ /home/epi/.local/recon-pipeline/databases/tesla-scan
[+] attached to sqlite database @ /home/epi/.local/recon-pipeline/databases/tesla-scan
[db-1] recon-pipeline>

Scan the target

[db-1] recon-pipeline> scan FullScan --exempt-list tesla-blacklist --target-file
→˓tesla-targetfile --interface eno1 --top-ports 2000 --rate 1200
[-] FullScan queued
[-] TKOSubsScan queued
[-] GatherWebTargets queued
[-] ParseAmassOutput queued
[-] AmassScan queued
[-] ParseMasscanOutput queued
[-] MasscanScan queued
[-] WebanalyzeScan queued
[-] SearchsploitScan queued
[-] ThreadedNmapScan queued
[-] WaybackurlsScan queued
[-] SubjackScan queued
[-] AquatoneScan queued
[-] GobusterScan queued
[db-1] recon-pipeline>

Existing Results Directories and You

When running additional scans against the same target, you have a few options. You can either

• use a new directory

1.1. Getting Started 7

recon-pipeline, Release 0.7.3

• reuse the same directory

If you use a new directory, the scan will start from the beginning.

If you choose to reuse the same directory, recon-pipeline will resume the scan from its last successful point.
For instance, say your last scan failed while running nmap. This means that the pipeline executed all upstream tasks
(amass and masscan) successfully. When you use the same results directory for another scan, the amass and masscan
scans will be skipped, because they’ve already run successfully.

Note: There is a gotcha that can occur when you scan a target but get no results. For some scans, the pipeline may still
mark the Task as complete (masscan does this). In masscan’s case, it’s because it outputs a file to results-dir/
masscan-results/ whether it gets results or not. Luigi interprets the file’s presence to mean the scan is complete.

In order to reduce confusion, as of version 0.9.3, the pipeline will prompt you when reusing results directory.

[db-2] recon-pipeline> scan FullScan --results-dir testing-results --top-ports 1000 --
→˓rate 500 --target tesla.com
[*] Your results-dir (testing-results) already exists. Subfolders/files may tell the
→˓pipeline that the associated Task is complete. This means that your scan may start
→˓from a point you don't expect. Your options are as follows:

1. Resume existing scan (use any existing scan data & only attempt to scan what isn
→˓'t already done)

2. Remove existing directory (scan starts from the beginning & all existing
→˓results are removed)

3. Save existing directory (your existing folder is renamed and your scan proceeds)
Your choice?

1.1.4 Viewing Scan Results

As of version 0.9.0, scan results are stored in a database located (by default) at ~/.local/recon-pipeline/
databases. Databases themselves are managed through the database command while viewing their contents is
done via view.

The view command allows one to inspect different pieces of scan information via the following sub-commands

• endpoints (gobuster results)

• nmap-scans

• ports

• searchsploit-results

• targets

• web-technologies (webanalyze results)

Each of the sub-commands has a list of tab-completable options and values that can help drilling down to the data you
care about.

All of the subcommands offer a --paged option for dealing with large amounts of output. --paged will show you
one page of output at a time (using less under the hood).

Chaining Results w/ Commands

All of the results can be piped out to other commands. Let’s say you want to feed some results from
recon-pipeline into another tool that isn’t part of the pipeline. Simply using a normal unix pipe | followed
by the next command will get that done for you. Below is an example of piping targets into gau

8 Chapter 1. Getting Started

https://github.com/lc/gau

recon-pipeline, Release 0.7.3

[db-2] recon-pipeline> view targets --paged
3.tesla.cn
3.tesla.com
api-internal.sn.tesla.services
api-toolbox.tesla.com
api.mp.tesla.services
api.sn.tesla.services
api.tesla.cn
api.toolbox.tb.tesla.services
...

[db-2] recon-pipeline> view targets | gau
https://3.tesla.com/pt_PT/model3/design
https://3.tesla.com/pt_PT/model3/design?redirect=no
https://3.tesla.com/robots.txt
https://3.tesla.com/sites/all/themes/custom/tesla_theme/assets/img/icons/favicon-
→˓160x160.png?2
https://3.tesla.com/sites/all/themes/custom/tesla_theme/assets/img/icons/favicon-
→˓16x16.png?2
https://3.tesla.com/sites/all/themes/custom/tesla_theme/assets/img/icons/favicon-
→˓196x196.png?2
https://3.tesla.com/sites/all/themes/custom/tesla_theme/assets/img/icons/favicon-
→˓32x32.png?2
https://3.tesla.com/sites/all/themes/custom/tesla_theme/assets/img/icons/favicon-
→˓96x96.png?2
https://3.tesla.com/sv_SE/model3/design
...

view endpoints

An endpoint consists of a status code and the scanned URL. Endpoints are populated via gobuster.

Show All Endpoints

[db-2] recon-pipeline> view endpoints --paged
[200] http://westream.teslamotors.com/y
[301] https://mobileapps.teslamotors.com/aspnet_client
[403] https://209.133.79.49/analog.html
[302] https://209.133.79.49/api
[403] https://209.133.79.49/cgi-bin/
[200] https://209.133.79.49/client
...

Filter by Host

[db-2] recon-pipeline> view endpoints --host shop.uk.teslamotors.com
[402] http://shop.uk.teslamotors.com/
[403] https://shop.uk.teslamotors.com:8443/
[301] http://shop.uk.teslamotors.com/assets
[302] http://shop.uk.teslamotors.com/admin.cgi
[200] http://shop.uk.teslamotors.com/.well-known/apple-developer-merchantid-domain-
→˓association

(continues on next page)

1.1. Getting Started 9

recon-pipeline, Release 0.7.3

(continued from previous page)

[302] http://shop.uk.teslamotors.com/admin
[403] http://shop.uk.teslamotors.com:8080/
[302] http://shop.uk.teslamotors.com/admin.php
[302] http://shop.uk.teslamotors.com/admin.pl
[200] http://shop.uk.teslamotors.com/crossdomain.xml
[403] https://shop.uk.teslamotors.com/
[db-2] recon-pipeline>

Filter by Host and Status Code

[db-2] recon-pipeline> view endpoints --host shop.uk.teslamotors.com --status-code 200
[200] http://shop.uk.teslamotors.com/crossdomain.xml
[200] http://shop.uk.teslamotors.com/.well-known/apple-developer-merchantid-domain-
→˓association
[db-2] recon-pipeline>

Remove Status Code from Output

Using --plain will remove the status-code prefix, allowing for easy piping of results into other commands.

[db-2] recon-pipeline> view endpoints --host shop.uk.teslamotors.com --plain
http://shop.uk.teslamotors.com/admin.pl
http://shop.uk.teslamotors.com/admin
http://shop.uk.teslamotors.com/
http://shop.uk.teslamotors.com/admin.cgi
http://shop.uk.teslamotors.com/.well-known/apple-developer-merchantid-domain-
→˓association
http://shop.uk.teslamotors.com:8080/
http://shop.uk.teslamotors.com/crossdomain.xml
https://shop.uk.teslamotors.com:8443/
https://shop.uk.teslamotors.com/
http://shop.uk.teslamotors.com/admin.php
http://shop.uk.teslamotors.com/assets
[db-2] recon-pipeline>

Include Headers

If you’d like to include any headers found during scanning, --headers will do that for you.

[db-2] recon-pipeline> view endpoints --host shop.uk.teslamotors.com --headers
[302] http://shop.uk.teslamotors.com/admin.php
[302] http://shop.uk.teslamotors.com/admin.cgi
[302] http://shop.uk.teslamotors.com/admin
[200] http://shop.uk.teslamotors.com/crossdomain.xml
[403] https://shop.uk.teslamotors.com/

Server: cloudflare
Date: Mon, 06 Apr 2020 13:56:12 GMT
Content-Type: text/html
Content-Length: 553
Retry-Count: 0
Cf-Ray: 57fc02c788f7e03f-DFW

(continues on next page)

10 Chapter 1. Getting Started

recon-pipeline, Release 0.7.3

(continued from previous page)

[403] https://shop.uk.teslamotors.com:8443/
Content-Type: text/html
Content-Length: 553
Retry-Count: 0
Cf-Ray: 57fc06e5fcbfd266-DFW
Server: cloudflare
Date: Mon, 06 Apr 2020 13:59:00 GMT

[302] http://shop.uk.teslamotors.com/admin.pl
[200] http://shop.uk.teslamotors.com/.well-known/apple-developer-merchantid-domain-
→˓association
[403] http://shop.uk.teslamotors.com:8080/

Server: cloudflare
Date: Mon, 06 Apr 2020 13:58:50 GMT
Content-Type: text/html; charset=UTF-8
Set-Cookie: __cfduid=dfbf45a8565fda1325b8c1482961518511586181530; expires=Wed, 06-

→˓May-20 13:58:50 GMT; path=/; domain=.shop.uk.teslamotors.com; HttpOnly; SameSite=Lax
Cache-Control: max-age=15
X-Frame-Options: SAMEORIGIN
Alt-Svc: h3-27=":443"; ma=86400, h3-25=":443"; ma=86400, h3-24=":443"; ma=86400, h3-

→˓23=":443"; ma=86400
Expires: Mon, 06 Apr 2020 13:59:05 GMT
Cf-Ray: 57fc06a53887d286-DFW
Retry-Count: 0

[402] http://shop.uk.teslamotors.com/
Cf-Cache-Status: DYNAMIC
X-Dc: gcp-us-central1,gcp-us-central1
Date: Mon, 06 Apr 2020 13:54:49 GMT
Cf-Ray: 57fc00c39c0b581d-DFW
X-Request-Id: 79146367-4c68-4e1b-9784-31f76d51b60b
Set-Cookie: __cfduid=d94fad82fbdc0c110cb03cbcf58d097e21586181289; expires=Wed, 06-

→˓May-20 13:54:49 GMT; path=/; domain=.shop.uk.teslamotors.com; HttpOnly;
→˓SameSite=Lax _shopify_y=e3f19482-99e9-46cd-af8d-89fb8557fd28; path=/; expires=Thu,
→˓07 Apr 2022 01:33:13 GMT
X-Shopid: 4232821
Content-Language: en
Alt-Svc: h3-27=":443"; ma=86400, h3-25=":443"; ma=86400, h3-24=":443"; ma=86400, h3-

→˓23=":443"; ma=86400
X-Content-Type-Options: nosniff
X-Permitted-Cross-Domain-Policies: none
X-Xss-Protection: 1; mode=block; report=/xss-report?source%5Baction%5D=index&source

→˓%5Bapp%5D=Shopify&source%5Bcontroller%5D=storefront_section%2Fshop&source%5Bsection
→˓%5D=storefront&source%5Buuid%5D=79146367-4c68-4e1b-9784-31f76d51b60b
Server: cloudflare
Content-Type: text/html; charset=utf-8
X-Sorting-Hat-Shopid: 4232821
X-Shardid: 78
Content-Security-Policy: frame-ancestors *; report-uri /csp-report?source%5Baction

→˓%5D=index&source%5Bapp%5D=Shopify&source%5Bcontroller%5D=storefront_section%2Fshop&
→˓source%5Bsection%5D=storefront&source%5Buuid%5D=79146367-4c68-4e1b-9784-31f76d51b60b
Retry-Count: 0
X-Sorting-Hat-Podid: 78
X-Shopify-Stage: production
X-Download-Options: noopen

[301] http://shop.uk.teslamotors.com/assets
[db-2] recon-pipeline>

1.1. Getting Started 11

recon-pipeline, Release 0.7.3

view nmap-scans

Nmap results can be filtered by host, NSE script type, scanned port, and product.

Show All Results

[db-2] recon-pipeline> view nmap-scans --paged
2600:9000:21d4:7800:c:d401:5a80:93a1 - http
===

tcp port: 80 - open - syn-ack
product: Amazon CloudFront httpd :: None
nse script(s) output:

http-server-header
CloudFront

http-title
ERROR: The request could not be satisfied

...

Filter by product

[db-2] recon-pipeline> view nmap-scans --product "Splunkd httpd"
209.133.79.101 - http
=====================

tcp port: 443 - open - syn-ack
product: Splunkd httpd :: None
nse script(s) output:

http-robots.txt
1 disallowed entry
/

http-server-header
Splunkd

http-title
404 Not Found

ssl-cert
Subject: commonName=*.teslamotors.com/organizationName=Tesla Motors, Inc./

→˓stateOrProvinceName=California/countryName=US
Subject Alternative Name: DNS:*.teslamotors.com, DNS:teslamotors.com
Not valid before: 2019-01-17T00:00:00
Not valid after: 2021-02-03T12:00:00

ssl-date
TLS randomness does not represent time

Filter by NSE Script

[db-2] recon-pipeline> view nmap-scans --nse-script ssl-cert --paged
199.66.9.47 - http-proxy
========================

tcp port: 443 - open - syn-ack

(continues on next page)

12 Chapter 1. Getting Started

recon-pipeline, Release 0.7.3

(continued from previous page)

product: Varnish http accelerator :: None
nse script(s) output:

ssl-cert
Subject: commonName=*.tesla.com/organizationName=Tesla, Inc./

→˓stateOrProvinceName=California/countryName=US
Subject Alternative Name: DNS:*.tesla.com, DNS:tesla.com
Not valid before: 2020-02-07T00:00:00
Not valid after: 2022-04-08T12:00:00

...

Filter by NSE Script and Port Number

[db-2] recon-pipeline> view nmap-scans --nse-script ssl-cert --port 8443
104.22.11.42 - https-alt
========================

tcp port: 8443 - open - syn-ack
product: cloudflare :: None
nse script(s) output:

ssl-cert
Subject: commonName=sni.cloudflaressl.com/organizationName=Cloudflare, Inc./

→˓stateOrProvinceName=CA/countryName=US
Subject Alternative Name: DNS:*.tesla.services, DNS:tesla.services, DNS:sni.

→˓cloudflaressl.com
Not valid before: 2020-02-13T00:00:00
Not valid after: 2020-10-09T12:00:00

[db-2] recon-pipeline>

Filter by Host (ipv4/6 or domain name)

[db-2] recon-pipeline> view nmap-scans --host 2600:9000:21d4:3000:c:d401:5a80:93a1
2600:9000:21d4:3000:c:d401:5a80:93a1 - http
===

tcp port: 80 - open - syn-ack
product: Amazon CloudFront httpd :: None
nse script(s) output:

http-server-header
CloudFront

http-title
ERROR: The request could not be satisfied

[db-2] recon-pipeline>

Include Command Used to Scan

The --commandline option will append the command used to scan the target to the results.

1.1. Getting Started 13

recon-pipeline, Release 0.7.3

[db-2] recon-pipeline> view nmap-scans --host 2600:9000:21d4:3000:c:d401:5a80:93a1 --
→˓commandline
2600:9000:21d4:3000:c:d401:5a80:93a1 - http
===

tcp port: 80 - open - syn-ack
product: Amazon CloudFront httpd :: None
nse script(s) output:

http-server-header
CloudFront

http-title
ERROR: The request could not be satisfied

command used:
nmap --open -sT -n -sC -T 4 -sV -Pn -p 80 -6 -oA /home/epi/PycharmProjects/recon-

→˓pipeline/tests/data/tesla-results/nmap-results/nmap.
→˓2600:9000:21d4:3000:c:d401:5a80:93a1-tcp 2600:9000:21d4:3000:c:d401:5a80:93a1

[db-2] recon-pipeline>

view ports

Port results are populated via masscan. Ports can be filtered by host and port number.

Show All Results

[db-2] recon-pipeline> view ports --paged
apmv3.go.tesla.services: 80
autodiscover.teslamotors.com: 80
csp.teslamotors.com: 443
image.emails.tesla.com: 443
marketing.teslamotors.com: 443
partnerleadsharing.tesla.com: 443
service.tesla.cn: 80
shop.uk.teslamotors.com: 8080
sip.tesla.cn: 5061
...

Filter by Host

[db-2] recon-pipeline> view ports --host tesla.services
tesla.services: 8443,8080
[db-2] recon-pipeline>

Filter by Port Number

[db-2] recon-pipeline> view ports --port-number 8443
tesla.services: 8443,8080
104.22.10.42: 8443,8080
104.22.11.42: 8443,8080
2606:4700:10::6816:a2a: 8443,8080

(continues on next page)

14 Chapter 1. Getting Started

recon-pipeline, Release 0.7.3

(continued from previous page)

2606:4700:10::6816:b2a: 8443,8080
[db-2] recon-pipeline>

view searchsploit-results

Searchsploit results can be filtered by host and type, the full path to any relevant exploit code can be shown as well.

Show All Results

[db-2] recon-pipeline> view searchsploit-results --paged
52.209.48.104, 34.252.120.214, 52.48.121.107, telemetry-eng.vn.tesla.services
===

local | 40768.sh | Nginx (Debian Based Distros + Gentoo) - 'logrotate' Local
→˓Privilege

| Escalation
remote | 12804.txt| Nginx 0.6.36 - Directory Traversal
local | 14830.py | Nginx 0.6.38 - Heap Corruption
webapps | 24967.txt| Nginx 0.6.x - Arbitrary Code Execution NullByte Injection
dos | 9901.txt | Nginx 0.7.0 < 0.7.61 / 0.6.0 < 0.6.38 / 0.5.0 < 0.5.37 / 0.4.

→˓0 <
| 0.4.14 - Denial of Service (PoC)

remote | 9829.txt | Nginx 0.7.61 - WebDAV Directory Traversal
remote | 33490.txt| Nginx 0.7.64 - Terminal Escape Sequence in Logs Command

→˓Injection
remote | 13822.txt| Nginx 0.7.65/0.8.39 (dev) - Source Disclosure / Download
remote | 13818.txt| Nginx 0.8.36 - Source Disclosure / Denial of Service
remote | 38846.txt| Nginx 1.1.17 - URI Processing SecURIty Bypass
remote | 25775.rb | Nginx 1.3.9 < 1.4.0 - Chuncked Encoding Stack Buffer Overflow

| (Metasploit)
dos | 25499.py | Nginx 1.3.9 < 1.4.0 - Denial of Service (PoC)
remote | 26737.pl | Nginx 1.3.9/1.4.0 (x86) - Brute Force
remote | 32277.txt| Nginx 1.4.0 (Generic Linux x64) - Remote Overflow
webapps | 47553.md | PHP-FPM + Nginx - Remote Code Execution

...

Filter by Host

[db-2] recon-pipeline> view searchsploit-results --paged --host telemetry-eng.vn.
→˓tesla.services
52.209.48.104, 34.252.120.214, 52.48.121.107, telemetry-eng.vn.tesla.services
===

local | 40768.sh | Nginx (Debian Based Distros + Gentoo) - 'logrotate' Local
→˓Privilege

| Escalation
remote | 12804.txt| Nginx 0.6.36 - Directory Traversal
local | 14830.py | Nginx 0.6.38 - Heap Corruption
webapps | 24967.txt| Nginx 0.6.x - Arbitrary Code Execution NullByte Injection
dos | 9901.txt | Nginx 0.7.0 < 0.7.61 / 0.6.0 < 0.6.38 / 0.5.0 < 0.5.37 / 0.4.

→˓0 <
| 0.4.14 - Denial of Service (PoC)

remote | 9829.txt | Nginx 0.7.61 - WebDAV Directory Traversal

(continues on next page)

1.1. Getting Started 15

recon-pipeline, Release 0.7.3

(continued from previous page)

remote | 33490.txt| Nginx 0.7.64 - Terminal Escape Sequence in Logs Command
→˓Injection
remote | 13822.txt| Nginx 0.7.65/0.8.39 (dev) - Source Disclosure / Download
remote | 13818.txt| Nginx 0.8.36 - Source Disclosure / Denial of Service
remote | 38846.txt| Nginx 1.1.17 - URI Processing SecURIty Bypass
remote | 25775.rb | Nginx 1.3.9 < 1.4.0 - Chuncked Encoding Stack Buffer Overflow

| (Metasploit)
dos | 25499.py | Nginx 1.3.9 < 1.4.0 - Denial of Service (PoC)
remote | 26737.pl | Nginx 1.3.9/1.4.0 (x86) - Brute Force
remote | 32277.txt| Nginx 1.4.0 (Generic Linux x64) - Remote Overflow
webapps | 47553.md | PHP-FPM + Nginx - Remote Code Execution

[db-2] recon-pipeline>

Filter by Type

[db-2] recon-pipeline> view searchsploit-results --paged --type webapps
52.209.48.104, 34.252.120.214, 52.48.121.107, telemetry-eng.vn.tesla.services
===

webapps | 24967.txt| Nginx 0.6.x - Arbitrary Code Execution NullByte Injection
webapps | 47553.md | PHP-FPM + Nginx - Remote Code Execution

...

Include Full Path to Exploit Code

52.209.48.104, 34.252.120.214, 52.48.121.107, telemetry-eng.vn.tesla.services
===

webapps | Nginx 0.6.x - Arbitrary Code Execution NullByte Injection
| /home/epi/.recon-tools/exploitdb/exploits/multiple/webapps/24967.txt

webapps | PHP-FPM + Nginx - Remote Code Execution
| /home/epi/.recon-tools/exploitdb/exploits/php/webapps/47553.md

...

view targets

Target results can be filtered by type and whether or not they’ve been reported as vulnerable to subdomain takeover.

Show All Results

[db-2] recon-pipeline> view targets --paged

3.tesla.com
api-internal.sn.tesla.services
api-toolbox.tesla.com
api.mp.tesla.services
api.sn.tesla.services
api.tesla.cn
...

16 Chapter 1. Getting Started

recon-pipeline, Release 0.7.3

Filter by Target Type

[db-2] recon-pipeline> view targets --type ipv6 --paged
2600:1404:23:183::358f
2600:1404:23:188::3fe7
2600:1404:23:18f::700
2600:1404:23:190::700
2600:1404:23:194::16cf
...

Filter by Possibility of Subdomain Takeover

[db-2] recon-pipeline> view targets --paged --vuln-to-subdomain-takeover
[vulnerable] api-internal.sn.tesla.services
...

view web-technologies

Web technology results are produced by webanalyze. Web technology results can be filtered by host, type, and product.

Show All Results

[db-2] recon-pipeline> view web-technologies --paged
Varnish (Caching)
=================

- inventory-assets.tesla.com
- www.tesla.com
- errlog.tesla.com
- static-assets.tesla.com
- partnerleadsharing.tesla.com
- 199.66.9.47
- onboarding-pre-delivery-prod.teslamotors.com
- 2600:1404:23:194::16cf
- 2600:1404:23:196::16cf

...

Filter by Technology Type

[db-2] recon-pipeline> view web-technologies --type "Programming languages"
PHP (Programming languages)
===========================

- www.tesla.com
- dummy.teslamotors.com
- 209.10.208.20
- 211.147.80.206
- trt.tesla.com
- trt.teslamotors.com

(continues on next page)

1.1. Getting Started 17

recon-pipeline, Release 0.7.3

(continued from previous page)

- cn-origin.teslamotors.com
- www.tesla.cn
- events.tesla.cn
- 23.67.209.106
- service.teslamotors.com

Python (Programming languages)
==============================

- api-toolbox.tesla.com
- 52.26.53.228
- 34.214.187.20
- 35.166.29.132
- api.toolbox.tb.tesla.services
- toolbox.teslamotors.com
- 209.133.79.93

Ruby (Programming languages)
============================

- storagesim.teslamotors.com
- 209.10.208.39

...

Filter by Product

[db-2] recon-pipeline> view web-technologies --product OpenResty-1.15.8.2
OpenResty-1.15.8.2 (Web servers)
================================

- links.tesla.com

[db-2] recon-pipeline>

Filter by Host

[db-2] recon-pipeline> view web-technologies --host api-toolbox.tesla.com
api-toolbox.tesla.com
=====================

- gunicorn-19.4.5 (Web servers)
- Python (Programming languages)

[db-2] recon-pipeline>

1.1.5 Manually interacting with the Database

If for whatever reason you’d like to query the database manually, from within the recon-pipeline shell, you can use the
py command to drop into a python REPL with your current ReconShell instance available as self.

./pipeline/recon-pipeline.py
recon-pipeline> py

(continues on next page)

18 Chapter 1. Getting Started

recon-pipeline, Release 0.7.3

(continued from previous page)

Python 3.7.5 (default, Nov 20 2019, 09:21:52)
[GCC 9.2.1 20191008] on linux
Type "help", "copyright", "credits" or "license" for more information.

End with `Ctrl-D` (Unix) / `Ctrl-Z` (Windows), `quit()`, `exit()`.
Non-Python commands can be issued with: app("your command")

>>> self
<__main__.ReconShell object at 0x7f69f457f790>

Once in the REPL, the currently connected database is available as self.db_mgr. The database is an instance of
Database Manager and has a session attribute which can be used to issue manual SQLAlchemy style queries.

>>> from pipeline.models.port_model import Port
>>> self.db_mgr.session.query(Port).filter_by(port_number=443)
<sqlalchemy.orm.query.Query object at 0x7f8cef804250>
>>>

1.1.6 Using a Scheduler

The backbone of this pipeline is spotify’s luigi batch process management framework. Luigi uses the concept of a
scheduler in order to manage task execution. Two types of scheduler are available, a local scheduler and a central
scheduler. The local scheduler is useful for development and debugging while the central scheduler provides the
following two benefits:

• Make sure two instances of the same task are not running simultaneously

• Provide visualization of everything that’s going on

While in the recon-pipeline shell, running tools install luigi-service will copy the luigid.
service file provided in the repo to its appropriate systemd location and start/enable the service. The result is that
the central scheduler is up and running easily.

The other option is to add --local-scheduler to your scan command from within the recon-pipeline shell.

1.1.7 Visualizing Tasks

Setup

To use the web console, you’ll need to install the luigid service. Assuming you’ve already installed pipenv and cre-
ated a virtual environment, you can simply run the tools install luigi-service from within the pipeline.

Dashboard

If you’re using the central scheduler, you’ll be able to use luigi’s web console to see a dashboard style synopsis of
your tasks.

1.1. Getting Started 19

https://github.com/spotify/luigi

recon-pipeline, Release 0.7.3

Dependency Graph

You can use the Dependency Graph link at the top of the dashboard to view your current task along with any
up/downstream tasks that are queued.

Make it So

To view the console from within recon-pipeline, you can run the status command or add --sausage to your
scan command at execution time. The web console runs on port 8082 by default, so at any time you can also just use
your favorite browser to check it out manually as well.

There are an accompanying set of blog posts detailing the development process and underpinnings of the pipeline.
Feel free to check them out if you’re so inclined, but they’re in no way required reading to use the tool.

• Installation Instructions - How to install recon-pipeline and associated dependencies

• Defining Target Scope - How to define the scope of your scans (list of targets and a blacklist)

20 Chapter 1. Getting Started

https://epi052.gitlab.io/notes-to-self/blog/2019-09-01-how-to-build-an-automated-recon-pipeline-with-python-and-luigi/

recon-pipeline, Release 0.7.3

• Running Scans - Example scan of tesla.com using recon-pipeline

• Viewing Scan Results - How to view scan results

• Using a Scheduler - The Luigi schedulers and which to choose

• Visualizing Tasks - How to check on active tasks once they’re running

1.1. Getting Started 21

recon-pipeline, Release 0.7.3

22 Chapter 1. Getting Started

CHAPTER 2

Personalization

2.1 Making Changes to the pipeline

2.1.1 Add a New Scanner

The process of adding a new scanner is relatively simple. The steps are outlined below.

Create a tool definition file

This step isn’t strictly necessary, but if you want the pipeline to know how to install/uninstall the tool your scanner
uses, this is where that is defined. Tool definition files live in the pipeline/tools directory.

pipeline/
...

recon-pipeline.py
tools

amass.yaml
aquatone.yaml

...

Tool Definition Required Fields

Create a .yaml file with the following fields.

23

recon-pipeline, Release 0.7.3

Field
Name

Type Description Re-
quired

commands Array of
strings

Which commands to run to install the tool True

dependenciesArray of
strings

Each dependency must be defined in a separate definition file, as they’ll be
installed before the current defintion’s tool

False

environ Dictio-
nary

Use this if you need to pass information via the environment to your tool
(amass.yaml has an example)

False

shell Boolean true means each command in commands will be run via /bin/sh -c (see
Popen’s shell argument for more details)

False

Useful yaml Helpers

pipeline.tools.loader defines a few helpful functions to assist with dynamically creating values in yaml files
as well as linking user-defined configuration values.

Dynamically creating strings and filesystem paths are handled by the following two functions.

• !join - join items in an array with a space character

• !join_path - join items in an array with a / character

In order to get values out of pipeline.recon.config.py, you’ll need to use one of the yaml helpers listed
below.

• !get_default - get a value from the pipeline.recon.config.defaults dictionary

• !get_tool_path - get a path value from the pipeline.tools.tools dictionary

Simple Example Tool Definition

The example below needs go to be installed prior to being installed itself. It then grabs the path to the go binary from
pipeline.tools.tools by using !get_tool_path. After that, it creates a command using !join that will
look like /usr/local/go/bin/go get github.com/tomnomnom/waybackurls. This command will
be run by the install waybackurls command (or install all).

dependencies: [go]
go: &gobin !get_tool_path "{go[path]}"

commands:
- !join [*gobin, get github.com/tomnomnom/waybackurls]

If you’re looking for a more complex example, check out searchsploit.yaml.

Write Your Scanner Class

You can find an abundance of information on how to write your scanner class starting with Part II of the blog posts tied
to recon-pipeline’s creation. Because scanner classes are covered in so much detail there, we’ll only briefly summarize
the steps here:

• Select luigi.Task or luigi.ExternalTask as your base class. Task allows more flexibility while
ExternalTask is great for simple scans.

• Implement the requires, output, and either run (Task) or program_args (ExternalTask) methods

24 Chapter 2. Personalization

https://docs.python.org/3.7/library/subprocess.html#subprocess.Popen
https://epi052.gitlab.io/notes-to-self/blog/2019-09-02-how-to-build-an-automated-recon-pipeline-with-python-and-luigi-part-two/

recon-pipeline, Release 0.7.3

Add Your Scan to a Wrapper (optional)

If you want to run your new scan as part of an existing pipeline, open up pipeline.recon.wrappers and edit
one of the existing wrappers (or add your own) to include your new scan. You should be able to import your new
scan, and then add a yield MyNewScan(**args) in order to add it to the pipeline. The only gotcha here is that
depending on what arguments your scan takes, you may need to strategically place your scan within the wrapper in
order to ensure it doesn’t get any arguments that it doesn’t expect.

2.1.2 Create a New Wrapper Scan

If for whatever reason you want something other than FullScan, the process for defining a new scan is relatively simple.
The HTBScan is a good example.

1. Define your new class, inheriting from luigi.WrapperTask and use the inherits decorator to include any
scan you want to utilize

@inherits(SearchsploitScan, AquatoneScan, GobusterScan, WebanalyzeScan)
class HTBScan(luigi.WrapperTask):

...

2. Include all parameters needed by any of the scans passed to inherits

def requires(self):
""" HTBScan is a wrapper, as such it requires any Tasks that it wraps. """
args = {

"results_dir": self.results_dir,
"rate": self.rate,
"target_file": self.target_file,
"top_ports": self.top_ports,
"interface": self.interface,
"ports": self.ports,
"exempt_list": self.exempt_list,
"threads": self.threads,
"proxy": self.proxy,
"wordlist": self.wordlist,
"extensions": self.extensions,
"recursive": self.recursive,

}
...

3. yield from each scan, keeping in mind that some of the parameters won’t be universal (i.e. need to be
removed/added)

def requires(self):
""" HTBScan is a wrapper, as such it requires any Tasks that it wraps. """
...

yield GobusterScan(**args)

remove options that are gobuster specific; if left dictionary unpacking to
→˓other scans throws an exception

for gobuster_opt in ("proxy", "wordlist", "extensions", "recursive"):
del args[gobuster_opt]

add aquatone scan specific option
args.update({"scan_timeout": self.scan_timeout})

(continues on next page)

2.1. Making Changes to the pipeline 25

recon-pipeline, Release 0.7.3

(continued from previous page)

yield AquatoneScan(**args)

del args["scan_timeout"]

yield SearchsploitScan(**args)
yield WebanalyzeScan(**args)

There are a few things you can do to modify the pipeline to your own specifications:

• Add a New Scanner

• Create a New Wrapper Scan

26 Chapter 2. Personalization

CHAPTER 3

API Reference

3.1 Commands

recon-pipeline provides a handful of commands:

• tools

• scan

• status

• database

• view

All other available commands are inherited from cmd2.

3.1.1 tools

Usage: tools [-h] {install, uninstall, reinstall, list} ...

Sub-commands:

install

Install any/all of the libraries/tools necessary to make the recon-pipeline function

tools install [-h]
{go, gobuster, subjack, masscan, amass, seclists, waybackurls,
exploitdb, searchsploit, recursive-gobuster, webanalyze,
luigi-service, aquatone, tko-subs, all}

27

https://github.com/python-cmd2/cmd2

recon-pipeline, Release 0.7.3

Positional Arguments

tool Possible choices: go, gobuster, subjack, masscan, amass, seclists, waybackurls,
exploitdb, searchsploit, recursive-gobuster, webanalyze, luigi-service, aquatone,
tko-subs, all

which tool to install

uninstall

Remove the already installed tool

tools uninstall [-h]
{go, gobuster, subjack, masscan, amass, seclists, waybackurls,
exploitdb, searchsploit, recursive-gobuster, webanalyze,
luigi-service, aquatone, tko-subs, all}

Positional Arguments

tool Possible choices: go, gobuster, subjack, masscan, amass, seclists, waybackurls,
exploitdb, searchsploit, recursive-gobuster, webanalyze, luigi-service, aquatone,
tko-subs, all

which tool to uninstall

reinstall

Uninstall and then Install a given tool

tools reinstall [-h]
{go, gobuster, subjack, masscan, amass, seclists, waybackurls,
exploitdb, searchsploit, recursive-gobuster, webanalyze,
luigi-service, aquatone, tko-subs, all}

Positional Arguments

tool Possible choices: go, gobuster, subjack, masscan, amass, seclists, waybackurls,
exploitdb, searchsploit, recursive-gobuster, webanalyze, luigi-service, aquatone,
tko-subs, all

which tool to reinstall

list

Show status of pipeline tools

tools list [-h]

28 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

3.1.2 database

Usage: database [-h] {list, delete, attach, detach} ...

Sub-commands:

list

List all known databases

database list [-h]

delete

Delete the selected database

database delete [-h]

attach

Attach to the selected database

database attach [-h]

detach

Detach from the currently attached database

database detach [-h]

3.1.3 scan

Usage: scan [-h] (--target-file TARGET_FILE | --target TARGET)
[--exempt-list EXEMPT_LIST] [--results-dir RESULTS_DIR]
[--wordlist WORDLIST] [--interface INTERFACE] [--recursive]
[--rate RATE] [--top-ports TOP_PORTS | --ports PORTS]
[--threads THREADS] [--scan-timeout SCAN_TIMEOUT] [--proxy PROXY]
[--extensions EXTENSIONS] [--sausage] [--local-scheduler]
[--verbose]
scantype

Positional Arguments

scantype which type of scan to run

3.1. Commands 29

recon-pipeline, Release 0.7.3

Named Arguments

--target-file file created by the user that defines the target’s scope; list of ips/domains

--target ip or domain to target

--exempt-list list of blacklisted ips/domains

--results-dir directory in which to save scan results (default: recon-results)

Default: “recon-results”

--wordlist path to wordlist used by gobuster (default: /home/docs/.local/recon-
pipeline/tools/seclists/Discovery/Web-Content/common.txt)

--interface which interface masscan should use (default: tun0)

--recursive whether or not to recursively gobust (default: False)

Default: False

--rate rate at which masscan should scan (default: 1000)

--top-ports ports to scan as specified by nmap’s list of top-ports (only meaningful to around
5000)

--ports port specification for masscan (all ports example: 1-65535,U:1-65535)

--threads number of threads for all of the threaded applications to use (default: 10)

--scan-timeout scan timeout for aquatone (default: 900)

--proxy proxy for gobuster if desired (ex. 127.0.0.1:8080)

--extensions list of extensions for gobuster (ex. asp,html,aspx)

--sausage open a web browser to Luigi’s central scheduler’s visualization site (see how the
sausage is made!)

Default: False

--local-scheduler use the local scheduler instead of the central scheduler (luigid) (default: False)

Default: False

--verbose shows debug messages from luigi, useful for troubleshooting (default: False)

Default: False

3.1.4 status

Usage: status [-h] [--port PORT] [--host HOST]

Named Arguments

--port port on which the luigi central scheduler’s visualization site is running (default:
8082)

Default: “8082”

--host host on which the luigi central scheduler’s visualization site is running (default:
localhost)

Default: “127.0.0.1”

30 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

3.1.5 view

Usage: view [-h]
{targets, web-technologies, endpoints, nmap-scans,
searchsploit-results, ports} ...

Sub-commands:

targets

List all known targets (ipv4/6 & domain names); produced by amass

view targets [-h] [--vuln-to-subdomain-takeover]
[--type {ipv4, ipv6, domain-name}] [--paged]

Named Arguments

--vuln-to-subdomain-takeover show targets identified as vulnerable to subdomain takeover

Default: False

--type Possible choices: ipv4, ipv6, domain-name

filter by target type

--paged display output page-by-page (default: False)

Default: False

web-technologies

List all known web technologies identified; produced by webanalyze

view web-technologies [-h] [--paged] [--host HOST] [--type TYPE]
[--product PRODUCT]

Named Arguments

--paged display output page-by-page (default: False)

Default: False

--host filter results by host

--type filter results by type

--product filter results by product

endpoints

List all known endpoints; produced by gobuster

3.1. Commands 31

recon-pipeline, Release 0.7.3

view endpoints [-h] [--headers] [--paged] [--plain]
[--status-code STATUS_CODE] [--host HOST]

Named Arguments

--headers include headers found at each endpoint (default: False)

Default: False

--paged display output page-by-page (default: False)

Default: False

--plain display without status-codes/color (default: False)

Default: False

--status-code filter results by status code

--host filter results by host

nmap-scans

List all known nmap scan results; produced by nmap

view nmap-scans [-h] [--paged] [--commandline] [--host HOST]
[--nse-script NSE_SCRIPT] [--port PORT] [--product PRODUCT]

Named Arguments

--paged display output page-by-page (default: False)

Default: False

--commandline display command used to scan (default: False)

Default: False

--host filter results by host

--nse-script filter results by nse script type ran

--port filter results by port scanned

--product filter results by reported product

searchsploit-results

List all known searchsploit hits; produced by searchsploit

view searchsploit-results [-h] [--paged] [--fullpath] [--host HOST]
[--type TYPE]

32 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

Named Arguments

--paged display output page-by-page (default: False)

Default: False

--fullpath display full path to exploit PoC (default: False)

Default: False

--host filter results by host

--type filter results by exploit type

ports

List all known open ports; produced by masscan

view ports [-h] [--paged] [--host HOST] [--port-number PORT_NUMBER]

Named Arguments

--paged display output page-by-page (default: False)

Default: False

--host filter results by host

--port-number filter results by port number

3.2 Database Manager

class pipeline.models.db_manager.DBManager(db_location)
Class that encapsulates database transactions and queries

add(item)
Simple helper to add a record to the database

add_ipv4_or_v6_address_to_target(tgt, ipaddr)
Simple helper that adds an appropriate IPAddress to the given target

close()
Simple helper to close the database session

get_all_endpoints()
Simple helper that returns all Endpoints from the database

get_all_exploit_types()
Simple helper that returns all exploit types reported by searchsploit

get_all_hostnames()→ list
Simple helper to return all hostnames from Target records

get_all_ipv4_addresses()→ list
Simple helper to return all ipv4 addresses from Target records

get_all_ipv6_addresses()→ list
Simple helper to return all ipv6 addresses from Target records

3.2. Database Manager 33

recon-pipeline, Release 0.7.3

get_all_nmap_reported_products()
Simple helper that returns all products reported by nmap

get_all_nse_script_types()
Simple helper that returns all NSE Script types from the database

get_all_port_numbers()
Simple helper that returns all Port.port_numbers from the database

get_all_targets()
Simple helper to return all ipv4/6 and hostnames produced by running amass

get_all_web_targets()
Simple helper that returns all Targets tagged as having an open web port

get_and_filter(model, defaults=None, **kwargs)
Simple helper to either get an existing record if it exists otherwise create and return a new instance

get_endpoint_by_status_code(code)
Simple helper that returns all Endpoints filtered by status code

get_endpoints_by_ip_or_hostname(ip_or_host)
Simple helper that returns all Endpoints filtered by ip or hostname

get_nmap_scans_by_ip_or_hostname(ip_or_host)
Simple helper that returns all Endpoints filtered by ip or hostname

get_or_create(model, **kwargs)
Simple helper to either get an existing record if it exists otherwise create and return a new instance

get_or_create_target_by_ip_or_hostname(ip_or_host)
Simple helper to query a Target record by either hostname or ip address, whichever works

get_ports_by_ip_or_host_and_protocol(ip_or_host, protocol)
Simple helper that returns all ports based on the given protocol and host

get_status_codes()
Simple helper that returns all status codes found during scanning

34 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

3.3 Database Models

3.3.1 Target Model

class pipeline.models.target_model.Target(**kwargs)
Database model that describes a target; This is the model that functions as the “top” model.

Relationships: ip_addresses: one to many -> pipeline.models.ip_address_model.
IPAddress

open_ports: many to many -> pipeline.models.port_model.Port

nmap_results: one to many -> pipeline.models.nmap_model.NmapResult

searchsploit_results: one to many -> pipeline.models.searchsploit_model.
SearchsploitResult

endpoints: one to many -> pipeline.models.endpoint_model.Endpoint

3.3. Database Models 35

recon-pipeline, Release 0.7.3

technologies: many to many -> pipeline.models.technology_model.Technology

screenshots: one to many -> pipeline.models.screenshot_model.Screenshot

3.3.2 Endpoint Model

class pipeline.models.endpoint_model.Endpoint(**kwargs)
Database model that describes a URL/endpoint.

Represents gobuster data.

Relationships: target: many to one -> pipeline.models.target_model.Target

headers: many to many -> pipeline.models.header_model.Header

3.3.3 Header Model

class pipeline.models.header_model.Header(**kwargs)
Database model that describes an http header (i.e. Server=cloudflare).

Relationships: endpoints: many to many -> pipeline.models.target_model.Endpoint

3.3.4 IP Address Model

class pipeline.models.ip_address_model.IPAddress(**kwargs)
Database model that describes an ip address (ipv4 or ipv6).

Represents amass data or targets specified manually as part of the target-file.

Relationships: target: many to one -> pipeline.models.target_model.Target

3.3.5 Nmap Model

class pipeline.models.nmap_model.NmapResult(**kwargs)
Database model that describes the TARGET.nmap scan results.

Represents nmap data.

Relationships: target: many to one -> pipeline.models.target_model.Target

ip_address: one to one -> pipeline.models.ip_address_model.IPAddress

port: one to one -> pipeline.models.port_model.Port

nse_results: one to many -> pipeline.models.nse_model.NSEResult

3.3.6 Nmap Scripting Engine Model

class pipeline.models.nse_model.NSEResult(**kwargs)
Database model that describes the NSE script executions as part of an nmap scan.

Represents NSE script data.

Relationships: NmapResult: many to many -> pipeline.models.nmap_model.NmapResult

36 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

3.3.7 Port Model

class pipeline.models.port_model.Port(**kwargs)
Database model that describes a port (tcp or udp).

Relationships: targets: many to many -> pipeline.models.target_model.Target

3.3.8 Screenshot Model

class pipeline.models.screenshot_model.Screenshot(**kwargs)
Database model that describes a screenshot of a given webpage hosted on a Target.

Represents aquatone data.

Relationships: port: one to one -> pipeline.models.port_model.Port

target: many to one -> pipeline.models.target_model.Target

endpoint: one to one -> pipeline.models.endpoint_model.Endpoint

similar_pages: black magic -> pipeline.models.screenshot_model.Screenshot

3.3.9 Searchsploit Model

class pipeline.models.searchsploit_model.SearchsploitResult(**kwargs)
Database model that describes results from running searchsploit –nmap TARGET.xml.

Represents searchsploit data.

Relationships: target: many to one -> pipeline.models.target_model.Target

3.3.10 Technology Model

class pipeline.models.technology_model.Technology(**kwargs)
Database model that describes a web technology (i.e. Nginx 1.14).

Represents webanalyze data.

Relationships: targets: many to many -> pipeline.models.target_model.Target

3.4 Parsers

3.4.1 Amass Parser

class pipeline.recon.amass.ParseAmassOutput(*args, **kwargs)
Read amass JSON results and create categorized entries into ip|subdomain files.

Parameters

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

3.4. Parsers 37

recon-pipeline, Release 0.7.3

• exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional
by upstream Task

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

output()
Returns the target output files for this task.

Returns luigi.contrib.sqla.SQLAlchemyTarget

requires()
ParseAmassOutput depends on AmassScan to run.

TargetList expects target_file as a parameter. AmassScan accepts exempt_list as an optional parameter.

Returns luigi.ExternalTask - TargetList

run()
Parse the json file produced by AmassScan and categorize the results into ip|subdomain files.

An example (prettified) entry from the json file is shown below

{ “Timestamp”: “2019-09-22T19:20:13-05:00”, “name”: “beta-partners.tesla.com”, “domain”:
“tesla.com”, “addresses”: [

{ “ip”: “209.133.79.58”, “cidr”: “209.133.79.0/24”, “asn”: 394161, “desc”: “TESLA -
Tesla”

}

], “tag”: “ext”, “source”: “Previous Enum”

}

3.4.2 Web Targets Parser

class pipeline.recon.web.targets.GatherWebTargets(*args, **kwargs)
Gather all subdomains as well as any ip addresses known to have a configured web port open.

Parameters

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional
by upstream Task

• top_ports – Scan top N most popular ports Required by upstream Task

• ports – specifies the port(s) to be scanned Required by upstream Task

• interface – use the named raw network interface, such as “eth0” Required by upstream
Task

• rate – desired rate for transmitting packets (packets per second) Required by upstream
Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

38 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

output()
Returns the target output for this task.

Returns luigi.contrib.sqla.SQLAlchemyTarget

requires()
GatherWebTargets depends on ParseMasscanOutput and ParseAmassOutput to run.

ParseMasscanOutput expects rate, target_file, interface, and either ports or top_ports as parameters.
ParseAmassOutput accepts exempt_list and expects target_file

Returns ParseMasscanOutput, str: ParseAmassOutput)

Return type dict(str

run()
Gather all potential web targets and tag them as web in the database.

3.4.3 Masscan Parser

class pipeline.recon.masscan.ParseMasscanOutput(*args, **kwargs)
Read masscan JSON results and create a pickled dictionary of pertinent information for processing.

Parameters

• top_ports – Scan top N most popular ports Required by upstream Task

• ports – specifies the port(s) to be scanned Required by upstream Task

• interface – use the named raw network interface, such as “eth0” Required by upstream
Task

• rate – desired rate for transmitting packets (packets per second) Required by upstream
Task

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

output()
Returns the target output for this task.

Naming convention for the output file is masscan.TARGET_FILE.parsed.pickle.

Returns luigi.local_target.LocalTarget

requires()
ParseMasscanOutput depends on Masscan to run.

Masscan expects rate, target_file, interface, and either ports or top_ports as parameters.

Returns luigi.Task - Masscan

run()
Reads masscan JSON results and creates a pickled dictionary of pertinent information for processing.

3.4. Parsers 39

recon-pipeline, Release 0.7.3

3.5 Scanners

3.5.1 Amass Scanner

class pipeline.recon.amass.AmassScan(*args, **kwargs)
Run amass scan to perform subdomain enumeration of given domain(s).

Note: Expects TARGET_FILE.domains file to be a text file with one top-level domain per line.

Install:

sudo apt-get install -y -q amass

Basic Example:

amass enum -ip -brute -active -min-for-recursive 3 -df tesla -json amass.
→˓tesla.json

Luigi Example:

PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.amass AmassScan --
→˓target-file tesla

Parameters

• exempt_list – Path to a file providing blacklisted subdomains, one per line.

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

output()
Returns the target output for this task.

Naming convention for the output file is amass.json.

Returns luigi.local_target.LocalTarget

requires()
AmassScan depends on TargetList to run.

TargetList expects target_file as a parameter.

Returns luigi.ExternalTask - TargetList

run()
Defines the options/arguments sent to amass after processing.

Returns list of options/arguments, beginning with the name of the executable to run

Return type list

40 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

3.5.2 Aquatone Scanner

class pipeline.recon.web.aquatone.AquatoneScan(*args, **kwargs)
Screenshot all web targets and generate HTML report.

Install:

mkdir /tmp/aquatone
wget -q https://github.com/michenriksen/aquatone/releases/download/v1.7.0/
→˓aquatone_linux_amd64_1.7.0.zip -O /tmp/aquatone/aquatone.zip
unzip /tmp/aquatone/aquatone.zip -d /tmp/aquatone
sudo mv /tmp/aquatone/aquatone /usr/local/bin/aquatone
rm -rf /tmp/aquatone

Basic Example: aquatone commands are structured like the example below.

cat webtargets.tesla.txt | /opt/aquatone -scan-timeout 900 -threads 20

Luigi Example:

PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.aquatone
→˓AquatoneScan --target-file tesla --top-ports 1000

Parameters

• threads – number of threads for parallel aquatone command execution

• scan_timeout – timeout in miliseconds for aquatone port scans

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional
by upstream Task

• top_ports – Scan top N most popular ports Required by upstream Task

• ports – specifies the port(s) to be scanned Required by upstream Task

• interface – use the named raw network interface, such as “eth0” Required by upstream
Task

• rate – desired rate for transmitting packets (packets per second) Required by upstream
Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

output()
Returns the target output for this task.

Returns luigi.contrib.sqla.SQLAlchemyTarget

parse_results()
Read in aquatone’s .json file and update the associated Target record

requires()
AquatoneScan depends on GatherWebTargets to run.

3.5. Scanners 41

recon-pipeline, Release 0.7.3

GatherWebTargets accepts exempt_list and expects rate, target_file, interface, and either ports or
top_ports as parameters

Returns luigi.Task - GatherWebTargets

run()
Defines the options/arguments sent to aquatone after processing.

cat webtargets.tesla.txt | /opt/aquatone -scan-timeout 900 -threads 20

Returns list of options/arguments, beginning with the name of the executable to run

Return type list

3.5.3 Full Scanner

class pipeline.recon.wrappers.FullScan(*args, **kwargs)
Wraps multiple scan types in order to run tasks on the same hierarchical level at the same time.

Note: Because FullScan is a wrapper, it requires all Parameters for any of the Scans that it wraps.

Parameters

• threads – number of threads for parallel gobuster command execution

• wordlist – wordlist used for forced browsing

• extensions – additional extensions to apply to each item in the wordlist

• recursive – whether or not to recursively gobust the target (may produce a LOT of
traffic. . . quickly)

• proxy – protocol://ip:port proxy specification for gobuster

• exempt_list – Path to a file providing blacklisted subdomains, one per line.

• top_ports – Scan top N most popular ports

• ports – specifies the port(s) to be scanned

• interface – use the named raw network interface, such as “eth0”

• rate – desired rate for transmitting packets (packets per second)

• target_file – specifies the file on disk containing a list of ips or domains

• results_dir – specifes the directory on disk to which all Task results are written

requires()
FullScan is a wrapper, as such it requires any Tasks that it wraps.

3.5.4 Gobuster Scanner

class pipeline.recon.web.gobuster.GobusterScan(*args, **kwargs)
Use gobuster to perform forced browsing.

Install:

42 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

go get github.com/OJ/gobuster
git clone https://github.com/epi052/recursive-gobuster.git

Basic Example:

gobuster dir -q -e -k -t 20 -u www.tesla.com -w /usr/share/seclists/Discovery/
→˓Web-Content/common.txt -p http://127.0.0.1:8080 -o gobuster.tesla.txt -x
→˓php,html

Luigi Example:

PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.gobuster
→˓GobusterScan --target-file tesla --top-ports 1000 --interface eth0 --proxy
→˓http://127.0.0.1:8080 --extensions php,html --wordlist /usr/share/seclists/
→˓Discovery/Web-Content/common.txt --threads 20

Parameters

• threads – number of threads for parallel gobuster command execution

• wordlist – wordlist used for forced browsing

• extensions – additional extensions to apply to each item in the wordlist

• recursive – whether or not to recursively gobust the target (may produce a LOT of
traffic. . . quickly)

• proxy – protocol://ip:port proxy specification for gobuster

• exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional
by upstream Task

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• top_ports – Scan top N most popular ports Required by upstream Task

• ports – specifies the port(s) to be scanned Required by upstream Task

• interface – use the named raw network interface, such as “eth0” Required by upstream
Task

• rate – desired rate for transmitting packets (packets per second) Required by upstream
Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

output()
Returns the target output for this task.

If recursion is disabled, the naming convention for the output file is gobuster.TARGET_FILE.txt Otherwise
the output file is recursive-gobuster_TARGET_FILE.log

Results are stored in their own directory: gobuster-TARGET_FILE-results

Returns luigi.local_target.LocalTarget

parse_results()
Reads in each individual gobuster file and adds each line to the database as an Endpoint

3.5. Scanners 43

recon-pipeline, Release 0.7.3

requires()
GobusterScan depends on GatherWebTargets to run.

GatherWebTargets accepts exempt_list and expects rate, target_file, interface, and either ports or
top_ports as parameters

Returns luigi.Task - GatherWebTargets

run()
Defines the options/arguments sent to gobuster after processing.

Returns list of options/arguments, beginning with the name of the executable to run

Return type list

3.5.5 Hackthebox Scanner

class pipeline.recon.wrappers.HTBScan(*args, **kwargs)
Wraps multiple scan types in order to run tasks on the same hierarchical level at the same time.

Note: Because HTBScan is a wrapper, it requires all Parameters for any of the Scans that it wraps.

Parameters

• threads – number of threads for parallel gobuster command execution

• wordlist – wordlist used for forced browsing

• extensions – additional extensions to apply to each item in the wordlist

• recursive – whether or not to recursively gobust the target (may produce a LOT of
traffic. . . quickly)

• proxy – protocol://ip:port proxy specification for gobuster

• exempt_list – Path to a file providing blacklisted subdomains, one per line.

• top_ports – Scan top N most popular ports

• ports – specifies the port(s) to be scanned

• interface – use the named raw network interface, such as “eth0”

• rate – desired rate for transmitting packets (packets per second)

• target_file – specifies the file on disk containing a list of ips or domains

• results_dir – specifes the directory on disk to which all Task results are written

requires()
HTBScan is a wrapper, as such it requires any Tasks that it wraps.

3.5.6 Masscan Scanner

class pipeline.recon.masscan.MasscanScan(*args, **kwargs)
Run masscan against a target specified via the TargetList Task.

44 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

Note: When specified, --top_ports is processed and then ultimately passed to --ports.

Install:

git clone https://github.com/robertdavidgraham/masscan /tmp/masscan
make -s -j -C /tmp/masscan
sudo mv /tmp/masscan/bin/masscan /usr/local/bin/masscan
rm -rf /tmp/masscan

Basic Example:

masscan -v --open-only --banners --rate 1000 -e tun0 -oJ masscan.tesla.json --
→˓ports 80,443,22,21 -iL tesla.ips

Luigi Example:

PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.masscan Masscan --
→˓target-file tesla --ports 80,443,22,21

Parameters

• rate – desired rate for transmitting packets (packets per second)

• interface – use the named raw network interface, such as “eth0”

• top_ports – Scan top N most popular ports

• ports – specifies the port(s) to be scanned

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

• exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional
by upstream Task

output()
Returns the target output for this task.

Naming convention for the output file is masscan.TARGET_FILE.json.

Returns luigi.local_target.LocalTarget

run()
Defines the options/arguments sent to masscan after processing.

Returns list of options/arguments, beginning with the name of the executable to run

Return type list

3.5. Scanners 45

recon-pipeline, Release 0.7.3

3.5.7 Searchsploit Scanner

class pipeline.recon.nmap.SearchsploitScan(*args, **kwargs)
Run searchcploit against each nmap*.xml file in the TARGET-nmap-results directory and write results
to disk.

Install: searchcploit is already on your system if you’re using kali. If you’re not using kali, refer to your
own distributions instructions for installing searchcploit.

Basic Example:

searchsploit --nmap htb-targets-nmap-results/nmap.10.10.10.155-tcp.xml

Luigi Example:

PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.nmap Searchsploit --
→˓target-file htb-targets --top-ports 5000

Parameters

• threads – number of threads for parallel nmap command execution Required by upstream
Task

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• rate – desired rate for transmitting packets (packets per second) Required by upstream
Task

• interface – use the named raw network interface, such as “eth0” Required by upstream
Task

• top_ports – Scan top N most popular ports Required by upstream Task

• ports – specifies the port(s) to be scanned Required by upstream Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

• results_dir – specifies the directory on disk to which all Task results are written Re-
quired by upstream Task

output()
Returns the target output for this task.

Naming convention for the output folder is TARGET_FILE-searchsploit-results.

The output folder will be populated with all of the output files generated by any searchsploit commands
run.

Returns luigi.local_target.LocalTarget

requires()
Searchsploit depends on ThreadedNmap to run.

TargetList expects target_file, results_dir, and db_location as parameters. Masscan expects rate, target_file,
interface, and either ports or top_ports as parameters. ThreadedNmap expects threads

Returns luigi.Task - ThreadedNmap

run()
Grabs the xml files created by ThreadedNmap and runs searchsploit –nmap on each one, saving the output.

46 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

3.5.8 Subjack Scanner

class pipeline.recon.web.subdomain_takeover.SubjackScan(*args, **kwargs)
Use subjack to scan for potential subdomain takeovers.

Install:

go get github.com/haccer/subjack
cd ~/go/src/github.com/haccer/subjack
go build
go install

Basic Example:

subjack -w webtargets.tesla.txt -t 100 -timeout 30 -o subjack.tesla.txt -ssl

Luigi Example:

PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.subdomain_
→˓takeover SubjackScan --target-file tesla --top-ports 1000 --interface eth0

Parameters

• threads – number of threads for parallel subjack command execution

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional
by upstream Task

• top_ports – Scan top N most popular ports Required by upstream Task

• ports – specifies the port(s) to be scanned Required by upstream Task

• interface – use the named raw network interface, such as “eth0” Required by upstream
Task

• rate – desired rate for transmitting packets (packets per second) Required by upstream
Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

output()
Returns the target output for this task.

Returns luigi.contrib.sqla.SQLAlchemyTarget

parse_results()
Reads in the subjack’s subjack.txt file and updates the associated Target record.

requires()
SubjackScan depends on GatherWebTargets to run.

GatherWebTargets accepts exempt_list and expects rate, target_file, interface, and either ports or
top_ports as parameters

Returns luigi.Task - GatherWebTargets

3.5. Scanners 47

recon-pipeline, Release 0.7.3

run()
Defines the options/arguments sent to subjack after processing.

Returns list of options/arguments, beginning with the name of the executable to run

Return type list

3.5.9 ThreadedNmap Scanner

class pipeline.recon.nmap.ThreadedNmapScan(*args, **kwargs)
Run nmap against specific targets and ports gained from the ParseMasscanOutput Task.

Install: nmap is already on your system if you’re using kali. If you’re not using kali, refer to your own
distributions instructions for installing nmap.

Basic Example:

nmap --open -sT -sC -T 4 -sV -Pn -p 43,25,21,53,22 -oA htb-targets-nmap-
→˓results/nmap.10.10.10.155-tcp 10.10.10.155

Luigi Example:

PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.nmap ThreadedNmap --
→˓target-file htb-targets --top-ports 5000

Parameters

• threads – number of threads for parallel nmap command execution

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• rate – desired rate for transmitting packets (packets per second) Required by upstream
Task

• interface – use the named raw network interface, such as “eth0” Required by upstream
Task

• top_ports – Scan top N most popular ports Required by upstream Task

• ports – specifies the port(s) to be scanned Required by upstream Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

output()
Returns the target output for this task.

Naming convention for the output folder is TARGET_FILE-nmap-results.

The output folder will be populated with all of the output files generated by any nmap commands run.
Because the nmap command uses -oA, there will be three files per target scanned: .xml, .nmap, .gnmap.

Returns luigi.local_target.LocalTarget

parse_nmap_output()
Read nmap .xml results and add entries into specified database

48 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

requires()
ThreadedNmap depends on ParseMasscanOutput to run.

TargetList expects target_file, results_dir, and db_location as parameters. Masscan expects rate, target_file,
interface, and either ports or top_ports as parameters.

Returns luigi.Task - ParseMasscanOutput

run()
Parses pickled target info dictionary and runs targeted nmap scans against only open ports.

3.5.10 TKOSubs Scanner

class pipeline.recon.web.subdomain_takeover.TKOSubsScan(*args, **kwargs)
Use tko-subs to scan for potential subdomain takeovers.

Install:

go get github.com/anshumanbh/tko-subs
cd ~/go/src/github.com/anshumanbh/tko-subs
go build
go install

Basic Example:

tko-subs -domains=tesla.subdomains -data=/root/go/src/github.com/anshumanbh/
→˓tko-subs/providers-data.csv -output=tkosubs.tesla.csv

Luigi Example:

PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.subdomain_
→˓takeover TKOSubsScan --target-file tesla --top-ports 1000 --interface eth0

Parameters

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional
by upstream Task

• top_ports – Scan top N most popular ports Required by upstream Task

• ports – specifies the port(s) to be scanned Required by upstream Task

• interface – use the named raw network interface, such as “eth0” Required by upstream
Task

• rate – desired rate for transmitting packets (packets per second) Required by upstream
Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

output()
Returns the target output for this task.

3.5. Scanners 49

recon-pipeline, Release 0.7.3

Returns luigi.contrib.sqla.SQLAlchemyTarget

parse_results()
Reads in the tkosubs .csv file and updates the associated Target record.

requires()
TKOSubsScan depends on GatherWebTargets to run.

GatherWebTargets accepts exempt_list and expects rate, target_file, interface, and either ports or
top_ports as parameters

Returns luigi.Task - GatherWebTargets

run()
Defines the options/arguments sent to tko-subs after processing.

Returns list of options/arguments, beginning with the name of the executable to run

Return type list

3.5.11 WaybackurlsScan Scanner

class pipeline.recon.web.waybackurls.WaybackurlsScan(*args, **kwargs)
Fetch known URLs from the Wayback Machine, Common Crawl, and Virus Total for historic data about the
target.

Install:

go get github.com/tomnomnom/waybackurls

Basic Example: waybackurls commands are structured like the example below.

cat domains.txt | waybackurls > urls

Luigi Example:

PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.waybackurls
→˓WaybackurlsScan --target-file tesla --top-ports 1000

Parameters

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional
by upstream Task

• top_ports – Scan top N most popular ports Required by upstream Task

• ports – specifies the port(s) to be scanned Required by upstream Task

• interface – use the named raw network interface, such as “eth0” Required by upstream
Task

• rate – desired rate for transmitting packets (packets per second) Required by upstream
Task

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

50 Chapter 3. API Reference

recon-pipeline, Release 0.7.3

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

output()
Returns the target output for this task.

Returns luigi.contrib.sqla.SQLAlchemyTarget

requires()
WaybackurlsScan depends on GatherWebTargets to run.

GatherWebTargets accepts exempt_list and expects rate, target_file, interface, and either ports or
top_ports as parameters

Returns luigi.Task - GatherWebTargets

run()
Defines the options/arguments sent to waybackurls after processing.

3.5.12 Webanalyze Scanner

class pipeline.recon.web.webanalyze.WebanalyzeScan(*args, **kwargs)
Use webanalyze to determine the technology stack on the given target(s).

Install:

go get -u github.com/rverton/webanalyze

loads new apps.json file from wappalyzer project
webanalyze -update

Basic Example:

webanalyze -host www.tesla.com -output json

Luigi Example:

PYTHONPATH=$(pwd) luigi --local-scheduler --module recon.web.webanalyze
→˓WebanalyzeScan --target-file tesla --top-ports 1000 --interface eth0

Parameters

• threads – number of threads for parallel webanalyze command execution

• db_location – specifies the path to the database used for storing results Required by
upstream Task

• exempt_list – Path to a file providing blacklisted subdomains, one per line. Optional
for upstream Task

• top_ports – Scan top N most popular ports Required by upstream Task

• ports – specifies the port(s) to be scanned Required by upstream Task

• interface – use the named raw network interface, such as “eth0” Required by upstream
Task

• rate – desired rate for transmitting packets (packets per second) Required by upstream
Task

3.5. Scanners 51

recon-pipeline, Release 0.7.3

• target_file – specifies the file on disk containing a list of ips or domains Required by
upstream Task

• results_dir – specifes the directory on disk to which all Task results are written Re-
quired by upstream Task

output()
Returns the target output for this task.

Returns luigi.contrib.sqla.SQLAlchemyTarget

parse_results()
Reads in the webanalyze’s .csv files and updates the associated Target record.

requires()
WebanalyzeScan depends on GatherWebTargets to run.

GatherWebTargets accepts exempt_list and expects rate, target_file, interface, and either ports or
top_ports as parameters

Returns luigi.Task - GatherWebTargets

run()
Defines the options/arguments sent to webanalyze after processing.

Returns list of options/arguments, beginning with the name of the executable to run

Return type list

52 Chapter 3. API Reference

CHAPTER 4

Indices and tables

• genindex

• search

53

recon-pipeline, Release 0.7.3

54 Chapter 4. Indices and tables

Index

A
add() (pipeline.models.db_manager.DBManager

method), 33
add_ipv4_or_v6_address_to_target()

(pipeline.models.db_manager.DBManager
method), 33

AmassScan (class in pipeline.recon.amass), 40
AquatoneScan (class in pipeline.recon.web.aquatone),

41

C
close() (pipeline.models.db_manager.DBManager

method), 33

D
DBManager (class in pipeline.models.db_manager), 33

E
Endpoint (class in pipeline.models.endpoint_model),

36

F
FullScan (class in pipeline.recon.wrappers), 42

G
GatherWebTargets (class in

pipeline.recon.web.targets), 38
get_all_endpoints()

(pipeline.models.db_manager.DBManager
method), 33

get_all_exploit_types()
(pipeline.models.db_manager.DBManager
method), 33

get_all_hostnames()
(pipeline.models.db_manager.DBManager
method), 33

get_all_ipv4_addresses()
(pipeline.models.db_manager.DBManager
method), 33

get_all_ipv6_addresses()
(pipeline.models.db_manager.DBManager
method), 33

get_all_nmap_reported_products()
(pipeline.models.db_manager.DBManager
method), 34

get_all_nse_script_types()
(pipeline.models.db_manager.DBManager
method), 34

get_all_port_numbers()
(pipeline.models.db_manager.DBManager
method), 34

get_all_targets()
(pipeline.models.db_manager.DBManager
method), 34

get_all_web_targets()
(pipeline.models.db_manager.DBManager
method), 34

get_and_filter() (pipeline.models.db_manager.DBManager
method), 34

get_endpoint_by_status_code()
(pipeline.models.db_manager.DBManager
method), 34

get_endpoints_by_ip_or_hostname()
(pipeline.models.db_manager.DBManager
method), 34

get_nmap_scans_by_ip_or_hostname()
(pipeline.models.db_manager.DBManager
method), 34

get_or_create() (pipeline.models.db_manager.DBManager
method), 34

get_or_create_target_by_ip_or_hostname()
(pipeline.models.db_manager.DBManager
method), 34

get_ports_by_ip_or_host_and_protocol()
(pipeline.models.db_manager.DBManager
method), 34

get_status_codes()
(pipeline.models.db_manager.DBManager
method), 34

55

recon-pipeline, Release 0.7.3

GobusterScan (class in pipeline.recon.web.gobuster),
42

H
Header (class in pipeline.models.header_model), 36
HTBScan (class in pipeline.recon.wrappers), 44

I
IPAddress (class in

pipeline.models.ip_address_model), 36

M
MasscanScan (class in pipeline.recon.masscan), 44

N
NmapResult (class in pipeline.models.nmap_model),

36
NSEResult (class in pipeline.models.nse_model), 36

O
output() (pipeline.recon.amass.AmassScan method),

40
output() (pipeline.recon.amass.ParseAmassOutput

method), 38
output() (pipeline.recon.masscan.MasscanScan

method), 45
output() (pipeline.recon.masscan.ParseMasscanOutput

method), 39
output() (pipeline.recon.nmap.SearchsploitScan

method), 46
output() (pipeline.recon.nmap.ThreadedNmapScan

method), 48
output() (pipeline.recon.web.aquatone.AquatoneScan

method), 41
output() (pipeline.recon.web.gobuster.GobusterScan

method), 43
output() (pipeline.recon.web.subdomain_takeover.SubjackScan

method), 47
output() (pipeline.recon.web.subdomain_takeover.TKOSubsScan

method), 49
output() (pipeline.recon.web.targets.GatherWebTargets

method), 38
output() (pipeline.recon.web.waybackurls.WaybackurlsScan

method), 51
output() (pipeline.recon.web.webanalyze.WebanalyzeScan

method), 52

P
parse_nmap_output()

(pipeline.recon.nmap.ThreadedNmapScan
method), 48

parse_results() (pipeline.recon.web.aquatone.AquatoneScan
method), 41

parse_results() (pipeline.recon.web.gobuster.GobusterScan
method), 43

parse_results() (pipeline.recon.web.subdomain_takeover.SubjackScan
method), 47

parse_results() (pipeline.recon.web.subdomain_takeover.TKOSubsScan
method), 50

parse_results() (pipeline.recon.web.webanalyze.WebanalyzeScan
method), 52

ParseAmassOutput (class in pipeline.recon.amass),
37

ParseMasscanOutput (class in
pipeline.recon.masscan), 39

Port (class in pipeline.models.port_model), 37

R
requires() (pipeline.recon.amass.AmassScan

method), 40
requires() (pipeline.recon.amass.ParseAmassOutput

method), 38
requires() (pipeline.recon.masscan.ParseMasscanOutput

method), 39
requires() (pipeline.recon.nmap.SearchsploitScan

method), 46
requires() (pipeline.recon.nmap.ThreadedNmapScan

method), 48
requires() (pipeline.recon.web.aquatone.AquatoneScan

method), 41
requires() (pipeline.recon.web.gobuster.GobusterScan

method), 44
requires() (pipeline.recon.web.subdomain_takeover.SubjackScan

method), 47
requires() (pipeline.recon.web.subdomain_takeover.TKOSubsScan

method), 50
requires() (pipeline.recon.web.targets.GatherWebTargets

method), 39
requires() (pipeline.recon.web.waybackurls.WaybackurlsScan

method), 51
requires() (pipeline.recon.web.webanalyze.WebanalyzeScan

method), 52
requires() (pipeline.recon.wrappers.FullScan

method), 42
requires() (pipeline.recon.wrappers.HTBScan

method), 44
run() (pipeline.recon.amass.AmassScan method), 40
run() (pipeline.recon.amass.ParseAmassOutput

method), 38
run() (pipeline.recon.masscan.MasscanScan method),

45
run() (pipeline.recon.masscan.ParseMasscanOutput

method), 39
run() (pipeline.recon.nmap.SearchsploitScan method),

46
run() (pipeline.recon.nmap.ThreadedNmapScan

method), 49

56 Index

recon-pipeline, Release 0.7.3

run() (pipeline.recon.web.aquatone.AquatoneScan
method), 42

run() (pipeline.recon.web.gobuster.GobusterScan
method), 44

run() (pipeline.recon.web.subdomain_takeover.SubjackScan
method), 48

run() (pipeline.recon.web.subdomain_takeover.TKOSubsScan
method), 50

run() (pipeline.recon.web.targets.GatherWebTargets
method), 39

run() (pipeline.recon.web.waybackurls.WaybackurlsScan
method), 51

run() (pipeline.recon.web.webanalyze.WebanalyzeScan
method), 52

S
Screenshot (class in

pipeline.models.screenshot_model), 37
SearchsploitResult (class in

pipeline.models.searchsploit_model), 37
SearchsploitScan (class in pipeline.recon.nmap),

46
SubjackScan (class in

pipeline.recon.web.subdomain_takeover),
47

T
Target (class in pipeline.models.target_model), 35
Technology (class in

pipeline.models.technology_model), 37
ThreadedNmapScan (class in pipeline.recon.nmap),

48
TKOSubsScan (class in

pipeline.recon.web.subdomain_takeover),
49

W
WaybackurlsScan (class in

pipeline.recon.web.waybackurls), 50
WebanalyzeScan (class in

pipeline.recon.web.webanalyze), 51

Index 57

	Getting Started
	Getting Started

	Personalization
	Making Changes to the pipeline

	API Reference
	Commands
	Database Manager
	Database Models
	Parsers
	Scanners

	Indices and tables
	Index

